

Journal of Organometallic Chemistry 562 (1998) 153-181

C_1 -verbrückte Fluorenyliden–Indenylidenkomplexe des Typs ($C_{13}H_8-CR_2-C_9H_{6-n}R'_n$)ZrCl₂ (n = 0, 1; R = Me, Ph, Butenyl; R' = Alkyl, Alkenyl) als Metallocenkatalysatorvorstufen für die Ethylenpolymerisation

Helmut G. Alt*, Michael Jung, Gerald Kehr

Laboratorium für Anorganische Chemie der Universität Bayreuth, Postfach 101251, D-95440 Bayreuth, Deutschland

Eingegangen am 31 Oktober 1997

Abstract

Twenty-three new *ansa* metallocene complexes of the type $(C_{13}H_8-CR_2-C_9H_{6-n}R'_n)ZrCl_2$ (**38–64**) (n = 0, 1; R = Me, Ph, butenyl; R' = alkyl, alkenyl) and the corresponding ligand precursors have been synthesized and characterized. The bonding situation of the π -ligands to the metal of C_1 -bridged complexes in solution was determined by NMR-spectroscopy. All complexes were tested for catalytic ethylene polymerization after activation with methyl aluminoxane (MAO). The substituents R in the bridge and the substituents R' in the 3-position of the indenylidene moiety have a strong influence on the activity of the catalysts and the molecular weight of the formed polymers. The ω -alkenyl substituents R and R' allow self-immobilization of the catalysts during the polymerization.

Zusammenfassung

Es wurden 23 neue *ansa*-Metallocenkomplexe des Typs ($C_{13}H_8-CR_2-C_9H_{6-n}R'_n$)ZrCl₂ (**38–64**) (n = 0, 1; R = Me, Ph, Butenyl; R' = Alkyl, Alkenyl), sowie die entsprechenden Ligandenvorstufen synthetisiert und charakterisiert. Der Bindungsmodus der π -Liganden zum Metall von C_1 -verbrückten Metallocenkomplexen in Lösung wurde NMR-spektroskopisch untersucht. Alle Komplexe eigneten sich nach der Aktivierung mit Methylaluminoxan (MAO) zur katalytischen Polymerisation von Ethylen. Die Substituenten R in der Brücke und die Substituenten R' in der 3-Position der Indenyliden-Einheit üben einen starken Einfluß auf die Aktivität der jeweiligen Katalysatoren und das Molekulargewicht der dargestellten Polymeren aus. Die ω -Alkenylsubstituenten R und R' ermöglichen die Selbstimmobilisierung der Katalysatoren während der Polymerisation. © 1998 Elsevier Science S.A. All rights reserved.

Keywords: Catalysis; Polymerization; Metallocene complexes; Zirconium; Immobilization

1. Einführung

Metallocendichloridkomplexe mit Metallen der vierten Nebengruppe eignen sich in Verbindung mit

MAO für die katalytische Polymerisation von Ethylen und anderen α -Olefinen [1–7]. Bei den zahlreichen Modifikationsmöglichkeiten der Metallocenkomplexe wurden bereits früher Indenylreste als Ligandenkomponenten in Betracht gezogen [8], doch deren Auswirkung in verbrückten Fluorenyliden-Indenylidenkomplexen

^{*} Corresponding author. Fax: +49 921 552157.

⁰⁰²²⁻³²⁸X/98/\$19.00 © 1998 Elsevier Science S.A. All rights reserved. *PII* S0022-328X(98)00406-9

bis dato nicht weiter untersucht. Es interessierte daher die Frage, wie stark die Substituenten R und R' in Komplexen des Typs ($C_{13}H_8-CR_2-C_9H_{6-n}R'_n$)ZrCl₂ (n=0, 1; R = Me, Ph, Butenyl; R' = Alkyl, Alkenyl) mit ω -Alkenylsubstituenten [9,10] in der Position 3 des Indenylidenliganden und am Brückenkohlenstoffatom die Polymerisationseigenschaften dieser Metallocenkomplexe und die resultierenden Polymermolekulargewichte beeinflussen und ob solche Katalysatorsysteme 'selbstimmobilisierend' wirken [11].

2. Ergebnisse und Diskussion

2.1. Synthese der Benzofulvene 1-4

Die Mannich analoge Umsetzung von Inden mit Aceton, bzw. Allylaceton in Gegenwart von Pyrrolidin [12] führt zu den Benzofulvenen 1 und $2/2^*$. Die Bildungstendenz dieser Benzofulvene ist geringer als die der analogen Fulvene. Fluoren, das von seinen chemischen Eigenschaften her eher ein methylenverbrücktes Biphenyl darstellt, bildet auf diese Weise keine Fulvene mehr (Schema 1).

Ketone mit sperrigen Substituenten können in einer Knoevenagel-Reaktion mit Inden kondensiert werden. Acetophenon oder Benzophenon werden in einer Ethanolatlösung mit Inden unter Rückfluß umgesetzt [13], um zu den Benzofulvenen $3/3^*$ und 4 zu gelangen. Die ¹H- und ¹³C-NMR-spektroskopischen Daten der Verbindungen 1–4 sind in Tabelle 1 aufgelistet (Schema 2).

2.2. Synthese der Ligandenvorstufen

 C_1 -verbrückte Ligandenvorstufen mit verschiedenen Brückensubstituenten erhält man durch Umsetzung von Fluorenyllithium mit den jeweiligen Benzofulvenen in Diethylether. Nach der Hydrolyse entstehen die entsprechenden C_1 -verbrückten Ligandenvorstufen

B [Schema 3 (a,b)]. Die Benzofulvene reagieren wesentlich langsamer als die analogen Fulvene.

Das sich im ersten Schritt bildende Indenylanion A [Schema 3 (a)] reagiert mit Organylhalogeniden zu den in Position 3 substituierten Ligandenvorstufen C [Schema 3 (c)]. Diese Art der Reaktionsführung eröffnet einen effektiven Zugang zu einer Vielzahl von Ligandenvorstufen (Abb. 1) und deren Metallocenkomplexen (Abb. 2). Die ¹H- und ¹³C-NMR-spektroskopi-schen Daten der Verbindungen 5-37/37* befinden sich in Tabelle 2. Die Zuordnung der Signale erfolgt nur dort, wo sie zweifelsfrei möglich ist. Vor allem bei den komplexen Spektren der Isomerengemische wurde auf eine vollständige Zuordnung der Signale verzichtet.

Das 6,6-Diphenylbenzofulven (4) reagiert nicht mit Fluorenyllithium bzw. -kalium. Auch Variationen der Reaktionsbedingungen, wie Lösungsmittelwechsel von Diethylether zu Tetrahydrofuran und höhere Reaktionstemperaturen, führten nicht zum Ziel. Wahrscheinlich wird aufgrund der beiden Phenylreste im 6,6-Diphenylbenzofulven die nucleophile Addition des Fluorenylanions verhindert.

2.3. Synthese der Metallocendichloridkomplexe

Die Synthese der Metallocendichloridkomplexe erfolgt nach bekannten Vorschriften [14,15]. Die Ligandenvorstufe wird mit zwei Äquivalenten n-Butyllithium in Diethylether zum Dianion umgesetzt. In einem zweiten Schritt wird durch Zugabe des Metalltetrachlorids (ZrCl₄ bzw. HfCl₄) das Dianion in den *ansa*-Metallocendichloridkomplex überführt. Die ¹H- und ¹³C-NMR-spektroskopischen Daten der Komplexe **38–64** (Abb. 2) sind in Tabelle 3 aufgelistet.

Mit der methyldiphenylsilylsubstituierten Ligandenvorstufe **18** konnte kein Metallocenkomplex erhalten werden. Die cyanosubstituierten Ligandenvorstufen **19** und **35/35*** ließen sich ebenfalls nicht zu Metallocenkomplexen umsetzen. Hierbei spielt offenbar die Konkurrenzreaktion des Kohlenstoffs der Nitrilfunktion mit Butyllithium unter Bildung von Ketiminen eine wichtige Rolle. Ebenso kann es durch Abstraktion eines Protons aus der aktivierten α -Methylengruppe zur Nitrilfunktion zu komplexen Folgereaktionen kommen.

 ω -Alkinylsubstituierte Systeme (**20**, **29/29***) reagieren sowohl als Dianion als auch als Trianion mit ZrCl₄ zu einem glänzend schwarzen, polymeren Reaktionsprodukt, das sich einem NMR-oder massenspektroskopischen Nachweis entzog. Hierbei kann es sich um ein Polyacetylenderivat mit hohem Transanteil handeln. Es ist bekannt, daß Acetylen in Gegenwart von Zirconiumtetrachlorid zu Polyacetylen polymerisiert [16,17].

Tabelle 1 NMR-Daten der Benzofulvene 1-4 [250.13 MHz (¹H), 69.2 MHz (¹³C)]

	'H-NMR ^{a)}	¹³ C-NMR ^{a)}
	7.98-7.94 (m, 1H),7.60-7.57 (m, 1H), 7.51-7.45 (2H) ^d , 7.08-7.01 (2H) ^d , 2.57 (s, 3H), 2.44 (s, 3H)	143.8, 142.9, 136.5, 135.6 (C_q), 128.1, 127.4, 125.8, 124.6, 123.3, 120.8 (CH), 24.6, 22.6 (CH ₃),
2/2*°)	7.87-7.83 (2H) ^d , 7.51-7.48 (2H) ^d , 7.40-7.36 (4H) ^d , 7.00-6.93 (4H) ^d , 6.14-6.07 (m, 2H), 5.36-5.20 (m, 4H), 3.02-2.95 (2H) ^d , 2.84-2.78 (2H) ^d , 2.62-2.48 (4H) ^d , 2.54 (s, 3H), 2.39 (s, 3H)	146.7, 145.8, 144.0, 143.9 (C_q), 137.6, 137.5 (CH), 137.0, 136.6, 135.6, 134.9 (C_q), 128.6, 128.5, 127.6, 127.1, 126.0, 124.8, 124.6, 124.4, 123.5, 123.1, 120.9, 120.8 (CH), 115.1, 115.0 (CH ₂), 37.8, 35.1, 33.1, 31.9 (CH ₂), 22.8, 21.0 (CH ₃)
3/3 * ^{b,e)}	7.93-7.90 (m, 1H), 7.55-7.28 (14H) ^d), 7.15 (dt, ${}^{3}J({}^{1}H,{}^{1}H)$ 7.5 Hz, ${}^{4}J({}^{1}H,{}^{1}H)$ 1.1 Hz, 1H), 7.00 (d, ${}^{3}J({}^{1}H,{}^{1}H)$ 5.6 Hz, 1H), 6.95 (d, ${}^{3}J({}^{1}H,{}^{1}H)$ 5.6 Hz, 1H), 6.89 (dt, ${}^{3}J({}^{1}H,{}^{1}H)$ 7.5 Hz, ${}^{4}J({}^{1}H,{}^{1}H)$ 1.1 Hz, 1H), 6.81 (d, ${}^{3}J({}^{1}H,{}^{1}H)$ 5.6 Hz, 1H), 6.53 (d, ${}^{3}J({}^{1}H,{}^{1}H)$ 5.6 Hz), 6.47 (d, ${}^{3}J({}^{1}H,{}^{1}H)$ 7.8 Hz, 1H), 2.82 (s, 3H), 2.56 (s, 3H)	144.6, 144.4, 144.4, 144.2, 143.8, 143.0, 138.3, 137.3, 135.9, 135.4 (C_{q}), 130.7, 130.2, 129.4, 129.3, 128.7, 127.9, 127.8, 127.6, 127.5, 126.9, 126.5, 124.9, 124.5, 124.0, 123.1, 121.1, 120.7 (CH), 24.8, 23.1 (CH ₃)
PhyPh Ab)	7.48-7.41 (4H) ^d , 7.40-7.26 (6H) ^d , 7.13 (dt, ${}^{3}J({}^{1}H,{}^{1}H)$ 7.3 Hz, ${}^{4}J({}^{1}H{}^{1}H)$ 1.0 Hz, 2H), 6.90-6.82 (2H) ^d , 6.66 (d, ${}^{3}J({}^{1}H,{}^{1}H)$ 5.5 Hz, 1H), 6.60 (d, ${}^{3}J({}^{1}H,{}^{1}H)$ 7.8 Hz, 1H)	144.2, 142.2, 141,5, 136.0 (C_q) ^{g)} , 131.5, 131.4, 130.5, 130.3, 128.5, 128.4, 128.1, 127.8, 127.1, 124.5, 123.5, 120.8 (CH)

^{a)} in CDCl₃ (gesättigte Lösung) bei 25 ± 1°C. ^{b)} auf eine Zuordung der ¹H-NMR-Signale im olefinischen Bereich wurde verzichtet. ^{d)} Als Verschiebungsbereich angegeben wegen Signalüberlagerung. e) Die vollständige spektroskopische Aufklärung der Isomerengemische der Ligandenvorstufen wurde nicht durchgeführt. $^{g)}$ keine weiteren C_q detektiert.

2.4. NMR-spektroskopische Untersuchung von 64

Von Komplex 64 wurden detaillierte NMR-Studien durchgeführt: Mit Hilfe von ¹H{¹H} NOE-Differenzspektroskopie und einem ¹H,¹H-COSY-DQF Pulsexperiment konnten die Positionen der einzelnen Protonen-Signale eindeutig zugeordnet werden.

Abb. 3 zeigt das eindimensionale ¹H-NMR-Spektrum. Gut zu erkennen sind die beiden Singuletts der Methylgruppen der Methylenbrücke bei $\delta = 2.81$ und 2.40 ppm. Die übrigen acht Resonanzgruppen im Alkylbereich sind aufgrund der chemischen Verschiebungen und ihrer Intensitäten den acht Protonen der Butyleneinheit zuzuordnen. Bemerkenswert ist der

Unterschied der chemischen Verschiebung für die beiden Methylenprotonen bei hohem Feld [H(20) $\delta = 0.16$, -2.31 ppm, $\Delta \delta = 2.47$ ppm]. Die annähernd gleiche Größe der beiden ${}^{1}J({}^{13}C, {}^{1}H)$ -Kopplungskonstanten von 117 Hz schließt eine α -agostische Wechselwirkung des einen Wasserstoffatoms mit dem Metallatom aus [18]. Die Abschirmung könnte durch den Ringstrom des darüberliegenden Benzoringes des Fluorenylidenliganden induziert werden.

Im Olefinbereich sind zwei Bereiche zu unterscheiden: Das Singulett bei $\delta = 5.60$ ppm für Proton (16) des Indenylidenliganden und die Protonenresonanz für die Benzoringe im Bereich von $\delta = 8.10-6.83$ ppm. Die Spinaufspaltung aufgrund der ${}^{3}J({}^{1}H, {}^{1}H)$ -Kopplung zeigt entweder Dublett-Struktur für die α-Protonen 1, 4, 5, 8, 11 und 14 oder Doppeldubletts für die β -Protonen 2, 3, 6, 7, 12 und 13 der Benzoringe. Das Signal bei $\delta = 7.38$ ppm (Dublett) muß einem der α -Protonen des Benzorings des Indenylidenliganden zugeordnet werden (Abb. 4).

Mit Hilfe des 2D-1H,1H-Cosy-Experiments (Abb. 5 und 6) lassen sich die Protonenresonanzen für die Benzoringe des Fluorenylidenliganden von denen des Indenyllidenliganden separieren.

Schema 3.

Die vier Kreuzsignale für jedes einzelne Proton der Butyleneinheit resultieren aus den geminalen und vicinalen Spin–Spin-Kopplungen. Es kann somit eine vorläufige Zuordnung getroffen werden, die durch das heteronukleare 2D-¹H,¹³C-Verschiebungskorrelationsexperiment bestätigt wird.

Die räumliche Anordnung der Benzoringe des Fluorenylidenliganden und des Indenylidenliganden zu den beiden Methylgruppen der Methylenbrücke könnte mit Hilfe von NOE-Differenz-Experimenten eindeutig festgelegt werden. Das Einstrahlen auf die Methylprotonen bei $\delta = 2.81$ bzw. bei 2.40 ppm (Abb. 7) zeigt die dazugehörigen positiven NOE-Effekte der Protonen bei $\delta = 8.00$ [Fluorenyliden, H(8)] und $\delta = 7.88$ ppm [Indenyliden, H(11)], bzw. 7.83 [Fluorenyliden, H(1)] und $\delta = 5.60$ ppm [Indenyliden, H(16)].

Die detektierten 29 Kohlenstoffsignale in den 1D- $^{13}C{^{1}H}$ -Spektren lassen sich im 1D- $^{13}C{^{1}H}$ (J-moduliert) Spektrum (Abb. 8) aufgrund ihrer Phasenmodulation und ihrer chemischen Verschiebung zehn C_q-, vier CH₂-, dreizehn CH- und zwei CH₃-Resonanzen zuordnen.

Die Zuordnung der Kohlenstoffsignale zu deren Protonenresonanzen konnte durch zweidimensionale ¹H,¹³C-Verschiebungskorrelation auf der Basis von HMQC-Pulsexperimenten getroffen werden [19].

Abb. 9 zeigt das ¹H,¹³C-Verschiebungskorrelationsspektrum (HMQC) für den Alkylbereich, Abb. 10 für den Olefinbereich der Verbindung. Die Zuordnung der Protonen zu den entsprechenden Kohlenstoffresonanzen ergibt sich aus den auftretenden Kreuzsignalen. In Abb. 9 kann man eindeutig die chemische Nichtäquivalenz der CH₂-Protonen der Butylenbrücke erkennen.

Die NMR-spektroskopische Charakterisierung von Verbindung 64 wurde durch Aufnahme von 2D-¹H,¹³C-

Verschiebungskorrelation unter Verwendung von long range ${}^{4}J({}^{13}C, {}^{1}H)$ -Kopplungen vervollständigt.

Tabelle 4 zeigt zusammenfassend die NMR-spektroskopischen Daten von Verbindung 64. Die chemischen Verschiebungen der Protonensignale sind kursiv, die der Kohlenstoffsignale fett gedruckt.

2.5. Diskussion der spektroskopischen Daten

Die chemischen Verschiebungen der ¹³C-Kohlenstoffatome π -Liganden werden der durch den Bindungsmodus an das Metall stark beeinflußt [20]. Die durch Röntgenstrukturanalyse abgesicherten Komplexe Cp₂ZrFlu₂ und Cp'₂Zr(Flu)Cl [21] besitzen zwei bzw. einen α -gebundenen, terminalen Fluorenylliganden. Die ¹³C chemische Verschiebung für das Zr–C(9)-Kohlenstoffatom liegt bei $\delta = 68$ ppm. Der Substituenteneinfluß für eine β -ständige Methylgruppe läßt sich mit ca. 5 ppm abschätzen. Stellt man diese Überlegungen in Rechnung, so stimmt die erhaltene chemische Verschiebung von $\delta = 78.3$ ppm (C(9), Komplex 64) recht genau mit dem Erwartungswert von $\delta = ca.$ 78 ppm überein (Tabelle 5).

Der Fluorenylidenligand von **64** sollte somit in Lösung einen Bindungsmodus besitzen, der zwischen η^3 und η^1 einzuordnen ist.

In ähnlichen Indenylkomplexen [22,23] werden den Indenylidenliganden η^2 bis η^3 -Bindungen zugeschrieben (Tabelle 6).

Die NMR-spektroskopischen Daten aus Tabelle 4 zeigen, daß sowohl im Fluorenyliden-als auch im Indenylidenliganden von **64** die Aromatizität der Benzoringe erhalten bleibt. Somit ist **64** als η^3 -Fluorenyliden- η^3 -Indenylidenzirconium-Komplex, wenn nicht gar als η^1 -Fluorenyliden $-\eta^3$ -Indenylidenzirconium-Komplex zu beschreiben.

Abb. 1. Übersicht über die synthetisierten Ligandenvorstufen.

Die Molekülstrukturen der C_1 -verbrückten Metallocendichloridkomplexe in Lösung können ähnlich interpretiert werden. Dem Fluorenyliden- bzw. dem Indenylidenliganden muß in den entsprechenden C_1 verbrückten Fluorenyliden–Indenyliden-Komplexen ein η^3 -Bindungsmodus zum Zentralmetall zugeschrieben werden.

Vergleicht man nun die einzelnen *ansa*-Metallocenkomplexe bezüglich ihrer chemischen Verschiebung von C(9) des Fluorenyliden- und C(10) des Indenylidenliganden, so stellt man fest, daß der π -Bindungsanteil des Fluorenylidenliganden in der Reihe C_1 -verbrückt C_2 -verbrückt-unverbrückt steigt [24,28]. Es ist also ein Trend von η^1 nach η^5 zu beobachten. Analog kann in der gleichen Reihenfolge ein Trend von η^3 nach η^5 für das Indenylidensystem beobachtet werden (Tabelle 7).

Eine Verschiebung der Signale aufgrund der Substitution einer Methylgruppe durch eine Phenylgruppe in der Brücke ist nicht erkennbar. Die Resonanzsignale der Si-verbrückten Komplexe können nicht direkt mit denen der kohlenstoffverbrückten Komplexe verglichen werden; es ist aber die gleiche Bindungssituation anzunehmen wie bei den methylenverbrückten Komplexen [28].

Abb. 2. Übersicht über die synthetisierten Metallocendichloridkomplexe.

Eine direkte Aussage der Bindungssituation für den aktivierten Komplex ist nicht möglich, da für das System Katalysator/MAO zu wenige Daten zur Verfügung stehen. Betrachtet man jedoch den aktivierten Komplex als 'black box' und setzt die zugänglichen Daten der Polymeranalytik (Aktivität und Molekulargewichte) Korrelation in mit den Bindungsverhältnissen, so zeigt sich, daß mit steigendem π -Anteil des Fluorenvlidenliganden die Aktivität des Katalysators steigt.

2.6. Polymerisation von Ethylen

2.6.1. ω-Alkenylsubstituierte Fluorenyliden–Indenyliden Komplexe

Alle dargestellten Metallocenkomplexe polymerisieren nach der Aktivierung mit Methylaluminoxan (MAO) Ethylen. Eine herausragende Eigenschaft der Metallocenkatalysatoren mit olefinischen Substituenten ist ihre Fähigkeit, sich bei der Polymerisation von α -Olefinen als Comonomer während der Polymerisation in die wachsende Polymerkette zu inkorporieren. Die homogenen Metallocenkatalysatoren immobilisieren sich dabei selbst. Die weitere Bildung von Polyolefin wird heterogen katalysiert [11]. Die Polymerkette dient als organischer Träger. Die Fähigkeit der einzelnen Komplexe zur Copolymerisation ist in den Tabellen 8 und 9 aufgelistet.

Durch ω -Alkenyl, Alkyl- oder Silylsubstituenten in Position 3 des Indenylidenliganden werden die Molekulargewichte der resultierenden Polymeren beeinflußt. In entsprechenden Metallocendichloridkomplexen befindet sich die Position 3 des Indenvlidenliganden räumlich direkt unterhalb eines Chloroliganden des Metalls. Nach der Aktivierung mit MAO ist diese Position ein Koordinationszentrum des Katalysators für α -Olefine. Ein Substituent in Position 3 nimmt deshalb direkt Einfluß auf Polymerisationsverlauf. den Durch geeignete Auswahl der Substituenten kann das Molekulargewicht des gebildeten Polymeren offenbar aufgrund einer der β -H-Wasserstoff-Eli-Verringerung minierungsquote gesteigert werden.

Im Vergleich zu den unsubstituierten Indenvlidenkomplexen 38 und 39/39*/MAO liefern die 3-Organylindenylidenkomplexe 41-63/63*/MAO bei der Polymerisation von Ethylen bis um den Faktor 4 hösynthetisierten Molekulargewichte des here Polyethylens. In den Figs. 11 and 12 sind die Polymerisationsresultate der C1-verbrückten Fluorenyliden-Indenyliden-Komplexe 38, 41 bis 44, 39/39* und 53-56/MAO dargestellt. Die Abbildungen verdeutlichen den Einfluß der Kettenlänge eines *w*-Alkenylsubstituenten auf die Polymerisationsaktivitäten und die Molekulargewichte der erhaltenen Polymeren. In x-Richtung sind die am Indenvlidenliganden in Position 3

Tabelle 2 NMR-Daten der Verbindungen **5–37/37*** [250.13 MHz (¹H), 69.2 MHz (¹³C)]

	¹ H-NMR ^{*)}	¹³ C-NMR ^{a)}
	8.12 (d, ${}^{3}J({}^{1}H,{}^{1}H)$ 7.5 Hz, 1H), 7.82 (d, ${}^{3}J({}^{1}H,{}^{1}H)$ 7.5 Hz, 2H), 7.71 (d, ${}^{3}J({}^{1}H,{}^{1}H)$ 7.5 Hz, 1H), 7.51-7.36 (4H) ^d , 7.25-7.20 (3H) ^d , 6.18 (t, ${}^{3}J({}^{1}H,{}^{1}H)$ 2.0 Hz, 1H), 4.89 (s, 1H), 3.60-3.58 (d, ${}^{3}J({}^{1}H,{}^{1}H)$ 2.0 Hz, 2H), 1.33 (s, br, 6H)	151.9, 145.6, 145.2, 143.8, 142.0 (C_q), 128.5, 126.9, 126.1, 125.9, 125.9, 124.4, 122.2, 119.3, 53.4 (CH), 40.2 (CH ₂), 37.1 (C_q), (CH ₃) ^h
5 Ph	7.74 (d, ${}^{3}J({}^{1}H,{}^{1}H)$ 7.7 Hz, 1H), 7.70 (d, ${}^{3}J({}^{1}H,{}^{1}H)$ 8.8 Hz, 1H), 7.57-7.40 (4H) ^{d)} , 7.35-7.10 (9H) ^{d)} , 6.91 (d, ${}^{3}J({}^{1}H,{}^{1}H)$ 7.7 Hz, 1H), 6.76 (s, 1H), 6.16 (d, ${}^{3}J({}^{1}H,{}^{1}H)$ 8.1 Hz, 1H), 5.09 (s, 1H), 3.57 (d, ${}^{3}J({}^{1}H,{}^{1}H)$ 6.2 Hz, 2H), 1.37 (s, 3H)	150.3, 145.2, 145.1, 145.1, 144.3, 144.1, 142.3, 142.1 (C_q), 129.7, 128.2, 127.9, 127.1, 127.1, 127.0, 126.5, 126.3, 126.0, 125.7, 124.2, 123.9, 122.9, 119.4, 119.0, 55.6 (CH), 48.0 (C_q), 37.4 (CH ₂), 20.5 (CH ₃)
6/6*	8.11 (d, ${}^{3}J({}^{1}H, {}^{1}H)$ 7.5 Hz, 1H), 7.84-7.67 (4H) ^d , 7.48-7.30 (5H) ^d , 7.04 (t, ${}^{3}J({}^{1}H, {}^{1}H)$ 7.5 Hz, 1H), 6.62 (d, ${}^{3}J({}^{1}H, {}^{1}H)$ 7.5 Hz, 1H), 6.16 (s, 1H), 5.96-5.80 (m, 1H), 5.04-4.96 (m, 2H), 4.85 (s, 1H), 3.54 (s, 2H), 2.78 (s, br, 1H), 2.26-2.16 (m, 1H), 1.98-1.83 (m, 2H), 0.75 (s, 3H)	148.9, 145.3, 144.9, 144.8, 143.9, 142.5, 141.8 (C_q), 139.2, 131.2, 127.1, 126.8, 126.7, 126.2, 126.1, 126.0, 125.7, 124.6, 124.4, 121.7, 119.6, 119.0 (CH), 114.0 (CH ₂), 54.4 (CH), 44.0 (CH ₂), 38.0 (C_q), 37.1, 29.2 (CH ₂), 18.5 (CH ₃)
	7.96 (d, ${}^{3}J({}^{1}H, {}^{1}H)$ 7.5 Hz, 1H), 7.72 (d, ${}^{3}J({}^{1}H, {}^{1}H)$ 7.5 Hz, 2H), 7.59 (d, ${}^{3}J({}^{1}H, {}^{1}H)$ 7.2 Hz, 1H), 7.40-7.10 (8H) ^d , 6.07 (d, ${}^{3}J({}^{1}H, {}^{1}H)$ 2.0 Hz, 1H), 6.02-5.86 (m, 1H), 5.16-5.05 (m, 1H), 4.77 (s, 1H), 3.52 (t, ${}^{3}J({}^{1}H, {}^{1}H)$ 6.5 Hz, 1H), 2.77-2.66 (m, 1H), 2.38-2.26 (m, 1H), 1.20 (s, br, 6H)	150.9, 149.2, 145.3, 145.2, 143.5 (C_q), 136.7, 133.3, 127.0, 127.0, 126.5, 126.4, 126.2, 125.9, 125.8, 124.7, 123.7, 122.3, 119.4, 119.3 (CH), 116.4 (CH ₂), 53.3, 47.7 (CH), 40.1 (C_q), 35.9 (CH ₂), (CH ₃) ^h
8	8.01 (d, ${}^{3}J({}^{1}H, {}^{1}H)$ 7.1 Hz, 1H), 7.76 (d, ${}^{3}J({}^{1}H, {}^{1}H)$ 7.5 Hz, 2H), 7.60 (dd, ${}^{3}J({}^{1}H, {}^{1}H)$ 7.2 Hz, ${}^{4}J({}^{1}H, {}^{1}H)$ 0.8 Hz, 2H) 1H), 7.44-7.33 (5H) ^d , 7.19-7.16 (3H) ^d , 6.14 (d, ${}^{3}J({}^{1}H, {}^{1}H)$ 2.1 Hz, 1H), 6.00-5.86 (m, 1H), 5.17- 5.03 (m, 2H), 4.81 (s, 1H), 3.57-3.52 (m, 1H), 2.32- 2.09 (3H) ^d , 1.77-1.71 (m, 1H), 1.30 (s, br, 6H)	151.0, 150.0, 145.4, 145.3, 144.0, 142.4 (C_q), 138.7, 133.3, 127.1, 127.0, 126.5, 126.4, 126.3, 126.0, 125.9, 124.8, 123.6, 122.4, 119.4 (CH), 114.9 (CH ₂), 53.5, 47.7 (CH), 40.2 (C_q), 32.0, 31.0 (CH ₂), (CH ₃) ^h
	8.01 (d, ${}^{3}J({}^{1}H, {}^{1}H)$ 7.7 Hz, 1H), 7.77 (d, ${}^{3}J({}^{1}H, {}^{1}H)$ 7.6 Hz, 2H), 7.60 (d, ${}^{3}J({}^{1}H, {}^{1}H)$ 7.0 Hz, 1H), 7.44-7.30 (6H) ^d , 7.21-7.12 (2H) ^d), 6.13 (d, ${}^{3}J({}^{1}H, {}^{1}H)$ 2.0 Hz, 1H), 5.99-5.80 (m, 1H), 5.12-5.02 (m, 2H), 4.82 (s, 1H), 3.51 (s, 1H), 2.22-2.15 (m, 2H), 2.11-2.01 (m, 1H), 1.73-1.53 (m, 3H), 1.27 (s, br, 6H)	150.8, 149.9, 145.3, 145.2, 143.4 (C_q), 138.6, 133.6, 127.0, 127.0, 126.7, 126.5, 126.2, 126.0, 125.8, 124.7, 123.5, 122.3, 119.4, 119.3 (CH), 114.7 (CH ₂), 53.4, 48.1 (CH), 40.2 (C_q), 34.2, 31.2, 27.2 (CH ₂), (CH ₃) ^h
	7.97 (d, ${}^{3}J({}^{1}H, {}^{1}H)$ 7.2 Hz, 1H), 7.73 (d, ${}^{3}J({}^{1}H, {}^{1}H)$ 7.2 Hz, 2H), 7.56 (dd, ${}^{3}J({}^{1}H, {}^{1}H)$ 7.2 Hz, 0.7 Hz, 1H), 7.40-7.27 (6H) ^d), 7.16-7.13 (m, 2H), 6.10 (d, ${}^{3}J({}^{1}H, {}^{1}H)$ 2.0 Hz, 1H), 5.90-5.76 (m, 1H), 5.08-4.94 (m, 2H), 4.78 (s, 1H), 3.47 (t, ${}^{3}J({}^{1}H, {}^{1}H)$ 6.2 Hz, 1H), 2.15-2.00 (m, 2H), 1.53-1.45 (6H) ^d , 1.22 (s, br, 6H)	150.7, 150.0, 145.3, 145.2, 143.4, 142.0 (C_q), 138.9, 133.7, 127.0, 127.0, 126.4, 126.2, 126.2, 125.9, 125.8, 124.6, 123.5, 122.3, 119.4 (CH), 114.4 (CH ₂), 53.4, 48.2 (CH), 40.1 (C_q), 33.5, 31.5, 29.3, 27.5 (CH ₂), (CH ₃) ^h
11		

sitzenden ω -Alkenylsubstituenten aufgetragen. Die Polymerisationsdaten aller synthetisierten Polyethylene finden sich in den Tabellen 8 and 9 wieder.

Die isoproylidenverbrückten Komplexe/MAO (Abb. 11) erzeugen Polymere mit Molekulargewichten von $100 \times 10^3 - 38 \times 10^3$ g/mol. Hierbei findet man für den

Tabelle 2 NMR-Daten der Verbindungen **5–37/37*** [250.13 MHz (¹H), 69.2 MHz (¹³C)]

	¹ H-NMR ^{a)}	¹³ C-NMR ^{a)}
MesSi	8.03 (d, ${}^{3}J({}^{1}H,{}^{1}H)$ 7.8 Hz, 1H), 7.75- 7.65 (m, 3H), 7.55 (d, ${}^{3}J({}^{1}H,{}^{1}H)$ 7.0 Hz, 2H), 7.39-7.21 (5H) ^{d)} , 6.93 (t, ${}^{3}J({}^{1}H,{}^{1}H)$ 7.5 Hz, 1H), 6.51 (d, ${}^{3}J({}^{1}H,{}^{1}H)$ 7.5 Hz, 1H), 6.17 (d, ${}^{3}J({}^{1}H,{}^{1}H)$ 1.8 Hz, 1H), 4.81 (s, 1H), 3.50 (s, 1H), 1.70 (s, 3H), 0.72 (s, 3H), -0.02 (s, 9H)	149.1, 147.3, 145.4, 142.7, 142.3 (C_q), 130.5, 126.9, 126.7, 126.4, 126.1, 125.9, 125.7, 124.4, 123.4, 123.3, 122.0, 119.5, 118.9 (CH), 53.6, 43.7 (CH), 40.2 (C_q), (CH ₃) ^h), -2.3 (CH ₃)
	8.09 (d, ${}^{3}J({}^{1}H, {}^{1}H)$ 7.5 Hz, 1H), 7.80-7.70 (4H) ^{d)} , 7.59 (t, ${}^{3}J({}^{1}H, {}^{1}H)$ 8.0 Hz, 1H), 7.41-7.23 (5H) ^{d)} , 6.98 (t, ${}^{3}J({}^{1}H, {}^{1}H)$ 7.5 Hz, 1H), 6.57 (m, 1H), 6.23 (d, ${}^{3}J({}^{1}H, {}^{1}H)$ 2.0 Hz, 1H), 5.81-5.74 (m, 1H), 4.95-4.87 (3H) ^{d)} , 3.62 (d, ${}^{3}J({}^{1}H, {}^{1}H)$ 2.0 Hz, 1H), 1.60 (s, 3H), 1.31 (s, 3H), 0.79 (s, 2H), 0.02 (s, 3H), -0.02 (s, 3H)	150.8, 149.5, 147.1, 145.4, 142.8, 141.8 (C_q), 134.2, 130.1, 127.0, 126.8, 126.7, 126.7, 126.4, 126.1, 126.0, 125.8, 125.0, 124.6, 123.6, 123.5, 122.2, 119.8, 119.0 (CH), 113.7 (CH ₂), 53.7, 42.4 (CH), 40.3 (C_q), 22.5, 22.3 (CH ₂), (CH ₃) ^b), -4.3, -4.6 (CH ₃)
	8.04 (d, ${}^{3}J({}^{1}H, {}^{1}H)$ 7.5 Hz, 1H), 7.78-7.68 (3H) ^d , 7.55 (d, ${}^{3}J({}^{1}H, {}^{1}H)$ 7.5 Hz, 1H), 7.39-7.23 (5H) ^d , 6.95 (t, ${}^{3}J({}^{1}H, {}^{1}H)$ 7.6 Hz, 1H), 6.35 (d, ${}^{3}J({}^{1}H, {}^{1}H)$ 7.6 Hz, 1H), 6.20 (d, ${}^{3}J({}^{1}H, {}^{1}H)$ 2.0 Hz, 1H), 5.85-5.74 (m, 1H), 5.03-4.92 (m, 2H), 4.84 (s, 1H), 3.57 (d, ${}^{3}J({}^{1}H, {}^{1}H)$ 1.8 Hz, 1H), 2.08-1.99 (m, 2H), 1.75 (s, 3H), 1.52-1.29 (6H) ^d , 0.74 (s, 3H), -0.02 (s, 3H), -0.06 (s, 3H)	149.1, 147.4, 145.5, 145.5, 142.8, 142.4, 141.7 (C_q), 138.9, 130.5, 126.9, 126.7, 126.4, 126.1, 126.0, 125.8, 124.5, 123.5, 122.1, 119.6, 119.0 (CH), 114.3 (CH ₂), 53.7, 42.9 (CH), 40.3 (C_q), 33.4, 32.7 (CH ₂), 28.0 (CH ₃), 23.3 (CH ₂), 22.3 (CH ₃), 14.6 (CH ₂), -3.9, -4.1 (CH ₃)
X	7.99 (d, ${}^{3}J({}^{1}H,{}^{1}H)$ 7.5 Hz, 1H), 7.75 (d, ${}^{3}J({}^{1}H,{}^{1}H)$ 7.8 Hz, 2H), 7.60-7.57 (m, 1H), 7.43-7.28 (5H) ${}^{d)}$, 7.18-7.14 (3H) ${}^{d)}$, 6.13 (d, ${}^{3}J({}^{1}H,{}^{1}H)$ 2.0 Hz, 1H), 4.81 (s, 1H), 1.65-1.41 (6H) ${}^{d)}$, 1.27 (s, br, 6H), 1.25 (t, ${}^{3}J({}^{1}H,{}^{1}H)$ 7.0 Hz, 3H)	150.6, 150.1, 145.4, 145.3, 143.4, 142.3 (C_q), 133.8, 127.0, 126.5, 126.3, 126.2, 126.0, 125.8, 124.6, 123.5, 122.3, 119.4, 119.4 (CH), 53.4, 48.3 (CH), 40.2 (C_q), 31.5, 30.2, 23.2 (CH ₂), (CH ₃) ^h , 14.1 (CH ₃)
15		
	8.08 (d, ${}^{3}J({}^{1}H,{}^{1}H)$ 7.4 Hz, 1H), 7.83 (d, ${}^{3}J({}^{1}H,{}^{1}H)$ 7.4 Hz, 2H), 7.68 (d, ${}^{3}J({}^{1}H,{}^{1}H)$ 7.2 Hz, 1H), 7.47-7.37 (6H) ^d , 7.26-7.22 (2H) ^d , 6.22 (d, ${}^{3}J({}^{1}H,{}^{1}H)$ 2.0 Hz, 1H), 4.91 (s, 1H), 3.58-3.55 (m, 1H), 1.71-1.30 (10H) ^d , 1.35 (s, br, 6H), 1.07 (m, 3H)	150.5, 150.0, 145.3, 145.2, 143.3, 142.1, 142.0 (C_q), 133.7, 126.9, 126.4, 126.2, 126.1, 125.9, 125.8, 124.6, 123.5, 122.2, 119.3, 119.3, 53.4, 48.3 (CH), 40.1 (C_q), 31.8, 31.7, 29.7, 29.0, 28.7 (CH ₂), 22.7 (CH ₂), (CH ₃) ^h , 14.1 (CH ₃)
	8.07 (d, ${}^{3}J({}^{1}H, {}^{1}H)$ 7.3 Hz, 1H), 7.82 (d, ${}^{3}J({}^{1}H, {}^{1}H)$ 7.5 Hz, 2H), 7.68 (d, ${}^{3}J({}^{1}H, {}^{1}H)$ 7.5 Hz, 1H), 7.48-7.26 (5H) ^d , 7.26-7.21 (3H) ^d , 6.22 (d, ${}^{3}J({}^{1}H, {}^{1}H)$ 2.0 Hz, 1H), 4.89 (s, 1H), 3.76-3-63 (2H) ^d , 3.48 (d, ${}^{3}J({}^{1}H, {}^{1}H)$ 0.4 Hz, 3H), 2.49-2.33 (m, 1H), 2.00-1.87 (m, 1H), 1.36 (s,br, 6H)	150.8, 149.5, 145.2, 145.1, 143.2, 142.0 (C_q), 133.1, 127.0, 126.9, 126.3, 126.1, 126.0, 125.8, 124.8, 123.6, 122.3, 119.3 (CH), 71.3 (CH ₂), 58.6 (CH ₃), 53.3, 45.1 (CH), 40.1 (C_q), 31.5 (CH ₂), (CH ₃) ^h
17		

pentenylsubstituierten Komplex **43**/MAO das höchste Polymerisationsaktivität und das höchste erreichte Molekulargeuricht.

Die Komplexe 39/39* und 53–56 unterscheiden sich von den isopropylidenverbrückten Komplexen dadurch, daß eine Methylgruppe des verbrückenden Kohlenstoffatoms durch eine Phenylgruppe substituiert wurde. Abb. 12 zeigt die erhaltenen Polymerisationsaktivitäten der Komplexe/MAO und die Molekulargewichte der hergestellten Polyethylene. Auch hier erzielt die Kombination pentenylsubstituierter Komplex **55**/MAO die höchsten Polymerisationsaktivitaten und liefert ein Polyethylen mit dem höchsten Molekulargewicht.

Eine Erklärung für dieses Phänomen könnte der Abstand des Katalysators zur Polymerkette als Träger sein. Durch den Einbau des Metallocenkomplexes in

Tabelle 2 NMR-Daten der Verbindungen 5-37/37* [250.13 MHz (¹H), 69.2 MHz (¹³C)]

	¹ H-NMR ^{a)}	¹³ C-NMR ^{a)}
Ph, Me Ph 18/18*	8.07 (d, ${}^{3}J({}^{1}H,{}^{1}H)$ 7.3 Hz, 1H), 7.82-7.50 (4H) ^{d)} , 7.54-7.46 (4H) ^{d)} , 7.40-7.22 (10H) ^{d)} , 7.15-7.09 (3H) ^{d)} , 6.89 (t, ${}^{3}J({}^{1}H,{}^{1}H)$ 7.6 Hz, 1H), 6.19-6.12 (2H) ^{d)} , 5.78-5.58 (m, 1H), 4.91-4.72 (m, 2H), 4.69 (s, 1H), 4.11 (d, ${}^{3}J({}^{1}H,{}^{1}H)$ 1.8 Hz, 1H), 2.80 (dt; t: ${}^{3}J({}^{1}H,{}^{1}H)$ 16.1 Hz, d: ${}^{3}J({}^{1}H,{}^{1}H)$ 4.5 Hz, 1H), 2.16 (dt, t: ${}^{3}J({}^{1}H,{}^{1}H)$ 16.1 Hz, d: ${}^{3}J({}^{1}H,{}^{1}H)$ 4.5 Hz, 1H), 1.67 (s, br, 1.5H), 1.64 (s, br, 1.5H), 1.38-1.26 (m, 2H), 0.49 (s, 1.5H), 0.37 (1.5H),	147.8, 146.9, 145.5, 145.5, 143.2, 142.1 (C _q), 139.5, 139.4 (CH), 136.0 (C _q), 134.9, 134.5 (CH), 134.5 (C _q), 133.0, 129.8, 129.5, 127.9, 127.0, 126.1, 125.8, 125.6, 121.6, 119.6, 118.8 (CH), 113.8, 113.8 (CH ₂), 54.7, 54.4 (CH), 44.2 (C _q), 41.7, 41.4 (CH), 38.7, 29.1 (CH ₂), 18.3, -5.8 (CH ₃)
NC-	7.95 (d, ${}^{3}J({}^{1}H,{}^{1}H)$ 7.3 Hz, 1H), 7.72-7.69 (2H) ^d), 7.53 (d, ${}^{3}J({}^{1}H,{}^{1}H)$ 7.3 Hz, 1H), 7.37-7.26 (6H) ^d), 7.18-7.08 (2H) ^d , 6.00 (d, ${}^{3}J({}^{1}H,{}^{1}H)$ 2.1 Hz, 1H), 4.74 (s, 1H), 3.49 (m, 1H), 2.36-2.31 (m, 2H), 2.21- 2.10 (m, 1H), 1.88-1.61 (3H) ^d), 1.27 (s, br, 3H), 1.12 (s, br, 3H)	151.9, 148.6, 145.1, 145.0, 143.3, 142.1, 142.0 (C_q), 132.1, 127.1, 127.0, 126.6, 126.3, 126.0, 125.9, 125.8, 125.0, 123.4, 122.5, 119.4, 119.4, 53.3, 47.2 (CH), 40.2 (C_q), 30.4, 23.0, 20.2, 17.5 (CH ₂), (CH ₃) ^h
19		
20	7.94 (d, ${}^{3}J({}^{1}H,{}^{1}H)$ 7.5 Hz, 1H), 7.69 (d, ${}^{3}J({}^{1}H,{}^{1}H)$ 7.5 Hz, 3H), 7.40-7.20 (6H) ^{d)} , 7.14-7.09 (2H) ^{d)} , 6.10 (d, ${}^{3}J({}^{1}H,{}^{1}H)$ 2.0 Hz, 1H), 4.73 (s, 1H), 3.62 (d, ${}^{3}J({}^{1}H,{}^{1}H)$ 7.5 Hz, 1H), 2.74-2.64 (m, 1H), 2.44-2.34 (m, 1H), 2.05-2.02 (m, 1H), 1.21 (s, br, 3H), 1.19 (s, br, 3H)	151.8, 148.0, 145.2, 145.1, 143.4, 142.1, 142.1 (C_q), 132.6, 127.1, 127.0, 126.9, 126.4, 126.2, 126.2, 125.9, 125.0, 123.8, 122.5, 119.4, 119.4 (CH), 83.0, 69.3 (C_q), 53.3, 46.8 (CH), 40.1 (C_q), 21.1 (CH ₂), (CH ₃) ^h
	8.02 (d, ${}^{3}J({}^{1}H,{}^{1}H)$ 7.6 Hz, 1H), 7.79-7.76 (3H) ^{d)} , 7.57-7.17 (13H) ^{d)} , 6.02 (d, ${}^{3}J({}^{1}H,{}^{1}H)$ 1.8 Hz, 1H), 4.82 (s, 1H), 3.80-3.74 (m, 1H), 3.28-3.23 (m, 1H), 2.82-2.74 (m, 1H), 1.18 (s, br, 6H)	150.8, 149.0, 145.2, 143.4, 142.0, 140.5 (C_q), 133.2, 129.0, 128.3, 127.0, 126.9, 126.5, 126.4, 126.2, 126.0, 125.8, 124.7, 123.8, 122.4, 119.4, 53.3, 49.7 (CH), 40.1 (C_q), 38.2 (CH ₂), (CH ₃) ^h
	8.00 (d, ${}^{3}J({}^{1}H, {}^{1}H)$ 7.9 Hz, 1H), 7.76 (d, ${}^{3}J({}^{1}H, {}^{1}H)$ 7.5 Hz, 2H), 7.60 (d, ${}^{3}J({}^{1}H, {}^{1}H)$ 7.2 Hz, 1H), 7.42-7.15 (13H) ^d , 6.15 (d, ${}^{3}J({}^{1}H, {}^{1}H)$ 2.0 Hz, 1H), 4.80 (s, 1H), 3.58 (m, 1H), 2.80 (m, 2H), 2.33 (m, 1H), 1.89 (s, 1H), 1.25 (s, br, 6H)	151.5, 150.0, 145.8, 145.7, 142.8, 142.5 (C_q), 133.6, 129.1, 128.9, 128.8, 127.5, 127.4, 126.9, 126.8, 126.7, 126.4, 126.3, 126.3, 125.2, 122.8, 119.8, 53.9, 48.3 (CH), 34.5, 34.0 (CH ₂), (CH ₃) ^{h)}
	7.80-7.66 (2H) ^{d)} , 7.53-7.23 (11H) ^{d)} , 7.16-7.07 (4H) ^{d)} , 6.89 (t, ${}^{3}J({}^{1}\text{H},{}^{1}\text{H})$ 7.6 Hz, 1H), 6.80 (d, ${}^{3}J({}^{1}\text{H},{}^{1}\text{H})$ 4.0 Hz, 1H), 6.11 (m, 1H), 5.96-5.83 (m, 1H), 5.24-5.01 (3H) ^{d)} , 3.75-3.62 (ABMX, ${}^{3}J({}^{1}\text{H},{}^{1}\text{H})$ 7.2 Hz, ${}^{3}J({}^{1}\text{H},{}^{1}\text{H})$ 19.7 Hz, 1H), 2.79 (AMNX, 1H), 2.50 (AMNX, 1H), 1.35 (s, 1.5H), 1.34 (2s, 1.5H)	149.4, 148.9, 145.2, 145.1, 144.4, 143.6, 142.3, 142.1 (C_q), 136.6, 136.5, 134.5, 134.5, 128.2, 127.9, 127.4, 127.2, 127.1, 126.5, 126.1, 126.0, 124.5, 123.1, 123.0, 119.4, 119.0 (CH), 116.7 (CH ₂), 48.1 (C_q), 47.9 47.9 (CH), 36.3 (CH ₂), 22.5 (CH ₃)
23/23*		

die Polymerkette wird der Katalysator zwar fixiert (\equiv Immobilisierung), besitzt aber immer noch eine gewisse Beweglichkeit, die offenbar von der Länge des Substituenten bestimmt wird (Schema 4).

Eine weitere Erklärung könnte die Wechselwirkung der Alkenyldoppelbindung mit dem aktiven Zentrum des eigenen Metallzentrums sein, wobei eine metallacyclische Struktur resultiert. Erste Versuche in diese Richtung haben ergeben, daß bei etwa äquimolarer Zugabe von MAO die Doppelbindung eines mit einer Butenylgruppe substituierten Komplexes verschwindet. Dies deutet auf eine Koordination der Doppelbindung an das Metall hin. Es wird so ein Metallacyclus gebildet, in dessen Alkylenring die Olefine bei der Polymerisation insertieren können, bis eine β -H-Eliminierung den Cyclus aufbricht. Der so entstandene Komplex mit einer Tabelle 2 NMR-Daten der Verbindungen **5–37/37*** [250.13 MHz (¹H), 69.2 MHz (¹³C)]

	^I H-NMR ^{a)}	¹³ C-NMR ^{a)}
Ph Ph	7.74-7.67 $(2H)^{d_1}$, 7.46-7.38 $(3H)^{d_1}$, 7.35-7.22 $(4H)^{d_1}$, 7.16-7.05 $(3H)^{d_1}$, 6.93 $(t, {}^3J({}^1H, {}^1H)$ 7.6 Hz, 1H), 6.74 (s, 1H), 6.30 (m, 1H), 5.98-5.87 (m, 1H), 5.14-5.02 (3H) ^{d_1} , 3.59 (m, 1H), 2.30-2.22 (m, 2H), 2.20-2.10 (m, 1H), 1.80-1.71 (m, 1H), 1.42 (s, 3H)	149.0, 145.1, 145.0, 144.4, 143.6, 142.3, 142.1 (C_q), 138.6, 134.5, 128.2, 127.9, 127.1, 127.0, 126.5, 126.2, 126.0, 124.4, 123.0, 119.4, 119.1 (CH), 115.0 (CH ₂), 48.0 (C_q), 47.9 (CH), 32.0, 31.3 (CH ₂), 21.2 (CH ₃)
24/24*		
Ph	7.76-7.70 (2H) ^{d)} , 7.47-7.24 (11H) ^{d)} , 7.18-7.07 (2H) ^{d)} , 6.98-6.92 (m, 1H), 6.77 (s, 1H), 6.33-6.27 (m, 1H), 5.93-5.82 (m, 1H), 5.11-5.01 (m, 2H), 3.59-3.56 (m, 1H), 2.19-2.13 (m, 2H), 2.10-2.03 (m, 1H), 1.74- 1.58 (3H) ^{d)} , 1.43 (s, 3H)	149.2, 145.1, 145.0, 144.6, 143.9, 141.4, 141.1 (C_q), 138.6, 134.7, 128.2, 127.8, 127.1, 127.0, 126.9, 126.4, 126.2, 126.0, 125.9, 124.3, 122.9, 122.9, 119.4, 119.0 (CH), 114.7 (CH ₂), 48.3 (CH), 48.0 (C_q), 34.1, 31.4, 27.0 (CH ₂), 23.4 (CH ₃)
25/25*		
	7.72-7.70 (2H) ^{d)} , 7.45-7.22 (7H) ^{d)} , 7.12-7.07 (5H) ^{d)} , 6.89 (t, ${}^{3}J({}^{1}H,{}^{1}H)$ 7.6 Hz, 1H), 6.75 (s, 1H), 6.33- 6.20 (m, 1H), 5.94-5.78 (m, 1H), 5.08-4.95 (3H) ^{d)} , 3.55-3.53 (m, 1H), 2.12-2.02 (m, 2H), 1.68-1.29 (6H) ^{d)} , 1.40 (s, 3H)	149.3, 145.3, 145.2, 144.8, 143.7, 142.3, 142.0 (C_q), 139.0 134.9, 128.3, 127.9, 127.2, 127.1, 126.5, 126.3, 126.1, 126.0, 124.4, 123.0, 119.5, 119.1 (CH), 114.6 (CH ₂), 48.5 (CH), 48.1 (C_q), 33.8, 31.7, 29.4, 27.4 (CH ₂), 22.5 (CH ₃)
26/26*		
Ph 	7.71 (t, ${}^{3}J({}^{1}H, {}^{1}H)$ 8.6 Hz, 2H), 7.46-7.42 (4H) ^d , 7.36-7.22 (5H) ^d , 7.16-7.02 (4H) ^d , 6.92 (t, ${}^{3}J({}^{1}H, {}^{1}H)$ 7.6 Hz, 1H), 6.78 (s, 1H), 6.23 (m, 1H), 5.06 (s, 1H), 3.56 (m, 1H), 2.09-2.00 (m, 1H), 1.72-1.29 (5H) ^d , 1.39 (s, 3H), 0.94 (s, 3H)	149.4, 148.9, 145.2, 145.1, 144.4, 143.6, 142.3, 142.1 (C_q), 135.0, 128.2, 127.8, 127.2, 127.1, 127.0, 126.4, 126.2, 126.0, 125.9, 124.3, 122.9, 122.9, 119.4, 119.0, 55.7 (CH), 48.5 (CH), 48.0 (C_q), 31.7, 30.1, 23.1 (CH ₂), 21.0 (CH ₃), 14.1 (CH ₃)
27/27*		
Physical Control of the second	7.71 (t, ${}^{3}J({}^{1}H, {}^{1}H)$ 8.6 Hz, 2H), 7.46-7.42 (4H) ^d , 7.36-7.22 (5H) ^d , 7.16-7.02 (4H) ^d , 6.92 (t, ${}^{3}J({}^{1}H, {}^{1}H)$ 7.6 Hz, 1H), 6.78 (s, 1H), 6.23 (m, br, 1H), 5.06 (s, 1H), 3.56 (m, 1H), 2.09-2.00 (m, 1H), 1.72-1.29 (9H) ^d , 1.40 (s, 3H), 0.94 (s, 3H)	149.4, 148.9, 145.2, 145.1, 144.4, 143.6, 142.3, 142.1 (C_0), 135.0, 128.2, 127.8, 127.2, 127.1, 127.0, 126.4, 126.2, 126.0, 125.9, 124.3, 122.9, 122.9, 119.4, 119.0 (CH), 55.7 (CH), 48.5 (CH), 48.0 (C_0), 32.0, 31.8, 29.7, 27.9, 22.7 (CH ₂), 21.0 (CH ₃), 14.1 (CH ₃)
28/28*		
Physical Action	7.79-7.71 (m, 2H), 7.62 (d, ${}^{3}J({}^{1}H, {}^{1}H)$ 7.2 Hz, 2H), 7.54-7.48 (m, 2H), 7.40 (t, ${}^{3}J({}^{1}H, {}^{1}H)$ 7.3 Hz, 1H), 7.37-7.26 (4H) ^{d)} , 7.23-7.09 (4H) ^{d)} , 6.99-6.93 (m, 2H), 6.17 (d, br, ${}^{3}J({}^{1}H, {}^{1}H)$ 3.6 Hz, 1H), 5.11 (s, 1H), 3.91-3.87 (m, 1H), 2.92-2.81 (m, 1H), 2.62-2.52 (m, 1H), 2.13-2.11 (m, 1H), 1.41 (s, 3H)	150.5, 147.5, 144.8, 144.3, 143.8, 142.5, 142.1 (C_0), 133.9, 128.3, 127.9, 127.3, 127.3, 127.1, 126.7, 126.4, 126.0, 124.9, 123.2, 119.6, 119.1 (CH), 69.6 (C_q), 56.0 (CH), 48.0 (C_q), 47.0 (CH), 21.5 (CH ₂), 20.0 (CH ₃)
29/29*		

 ω -ständigen Doppelbindung am verlängerten Substituenten des Indenylidenliganden kann an weiteren Polymerisationsreaktionen teilnehmen (Schema 5).

2.6.2. Einfluß der Brückensubstituenten auf das Molekulargewicht der Polymeren

Abb. 13 zeigt eine Auswahl von Daten der Tabellen 8 and 9, die den Einfluß der Phenylgruppe in der Brücke des Metallocenkomplexes auf das Molekulargewicht der von diesen Komplexen/MAO hergestellten Polymeren veranschaulichen. Durch den Austausch einer Methylgruppe gegen eine Phenylgruppe wird es möglich, die Molekulargewichte der Polyethylene auf ein Drei-bis Vierfaches zu steigern.

Dieser Befund steht im Einklang mit den Ergebnissen anderer Arbeitsgruppen, wobei andere Metallo-

Tabelle 2 NMR-Daten der Verbindungen 5-37/37* [250.13 MHz (¹H), 69.2 MHz (¹³C)]

	¹ H-NMR ^{a)}	¹³ C-NMR ^{a)}
30/30*	7.83-7.71 (2H) ^{d)} , 7.58-7.07 (m, 18H) ^{d)} , 6.95-6.93 (2H) ^{d)} , 6.68-6.66 (m, 1H), 6.23 (d, br, ${}^{3}J({}^{1}H, {}^{1}H)$ 3.6 Hz, 1H), 4.98-4.95 (m, 1H), 3.92 (s, 1H), 3.38-3.23 (m, 1H), 3.18-2.88 (m, 1H), 1.37 (s, 3H)	149.2, 148.6, 148.5, 145.1, 144.4, 142.3, 142.0, 140.2 (C_q), 134.4, 129.2, 129.0, 128.8, 128.5, 128.3, 128.2, 127.9, 127.6, 127.4, 127.2, 127.0, 126.8, 126.5, 126.3, 126.2, 126.0, 125.1, 124.9, 124.4, 123.3, 123.1, 119.9, 119.4, 119.1, 50.0, 49.6 (CH), 47.9, 47.8 (C_q), 38.3, 37.0 (CH ₂), 21.0 (CH ₃)
	7.71 (t, ${}^{3}J({}^{1}H, {}^{1}H)$ 8.2 Hz, 2H), 7.46-7.21 (14H) ^{d)} , 7.18-7.07 (4H) ^{d)} , 6.93 (d, ${}^{3}J({}^{1}H, {}^{1}H)$ 7.7 Hz, 1H), 6.75 (s, 1H), 6.33 (m, 1H), 5.05 (s, 1H), 3.60 (m, 1H), 2.77 (m, 2H), 2.36 (m, 1H), 1.97 (m, 1H), 1.44 (s, 3H)	149.8, 148.8, 145.1, 145.0, 144.4, 143.6, 142.3, 142.1 (C_q), 134.4, 128.4, 128.4, 128.2, 127.9, 127.1, 127.1, 127.0, 126.5, 126.2, 126.0, 126.0, 125.9, 124.5, 123.0, 122.9, 119.4, 119.1, 48.1 (CH), 48.0, 33.9 (CH ₂), 21.4 (CH ₃)
31/31*	7.87-7.63 (2H) ^{d)} , 7.59-7.22 (11H) ^{d)} , 7.08-6.82 (2H) ^{d)} , 6.88-6.36 (2H) ^{d)} , 6.55 (d, ${}^{3}J({}^{1}H,{}^{1}H)$ 2.0 Hz, 1H), 3.90 (s, 1H), 2.28 (s, 3H), 0.05 (s, 3H), -0.06 (s, 6H)	149.6, 146.7, 145.8, 145.4, 145.0, 143.3, 142.0 (C_q), 131.8, 128.3, 127.7, 127.0, 126.7, 126.3, 126.2, 126.2, 126.0, 125.0, 124.2, 122.9, 122.8, 119.8, 119.2 (CH), 44.3, 44.1 (CH), 36.9 (C_q), 24.5 (CH ₃), -2.3 (CH ₃)
32/32* ^{e)}		
Ph Ph Me Me 33/33* ^{c)}	7.87-7.70 (2H) ^{d)} , 7.55-7.22 (11H) ^{d)} , 7.16-6.99 (2H) ^{d)} , 6.95-6.87 (m, 1H), 6.46/6.44/6.39/6.36 (1H), 5.74- 5.56 (m, 1H), 5.08 (s), 5.02 (s, 1H), 4.93-4.78 (m, 2H), 3.93 (s), 3.90 (s, 1H), 3.49 (d), 2.76 (s), 2.50 (s), 1.53-1.42 (m, 2H), 1.28 (s, 3H), 0.07 (s, 3H), -0.09 (s, 3H)	146.8, 146.2, 147.8, 147.7, 146.6, 143.9, 143.7, 142.3 (C_q), 134.5, 131.7, 131.0, 129.6, 129.0, 128.7, 128.2, 128.1, 127.9, 127.8, 127.4, 127.4, 127.3, 127.1, 127.0, 127.0, 126.8, 126.6, 126.6, 126.4, 126.4, 125.7, 125.3, 124.9, 124.6, 124.4, 123.6, 123.4, 123.2, 121.0, 120.3, 120.2, 119.6, 119.6 (CH), 114.0 (CH ₂), 49.0 (C_q), 43.2, 41.7 (CH), 38.8 (CH ₂), 25.0, -4.0, -4.5 (CH ₃)
	7.73-7.67 (2H) ^d , 7.46-7.41 (4H) ^d , 7.32-7.20 (5H) ^d , 7.11-7.08 (4H) ^d , 6.94 (t, ${}^{3}J({}^{1}H, {}^{1}H)$ 7.6 Hz, 1H), 6.73 (s, 1H), 6.28-6.27 (m, 1H), 5.06 (s, 1H), 3.90-3.66 (m, 2H), 3.58 (t, ${}^{3}J({}^{1}H, {}^{1}H)$ 6.5 Hz, 2H), 3.40 (s, 3H), 2.38-2.25 (m, 1H), 1.97-1.83 (m, 1H), 1.39 (s, 3H)	149.1, 148.8, 145.1, 145.0, 144.4, 143.5, 142.3, 142.0 (C_q), 134.4, 128.2, 127.8, 127.1, 127.0, 127.0, 126.5, 126.2, 126.0, 126.0, 124.5, 123.0, 123.0, 119.4, 119.0 (CH), 71.3 (CH ₂), 58.7 (CH), 55.5 (CH ₃), 48.0 (C_q), 45.6 (CH), 31.8 (CH ₂), 21.0 (CH ₃)
34/34*		
Ph Ph NC- 35/35*	7.84-7.82 (2H) ^d , 7.57-7.54 (4H) ^d , 7.45-7.11 (11H) ^d , 6.70 (d, br, ${}^{3}J({}^{1}H, {}^{1}H)$ 7.6 Hz, 1H), 6.61 (s, 1H), 5.18 (s, 1H), 3.71-3.67 (m, 1H), 2.38 (t, ${}^{3}J({}^{1}H, {}^{1}H)$ 7.0 Hz, 2H), 2.34-2.22 (m, 1H), 2.03-1.95 (m, 1H), 1.80- 1.65 (m, 2H), 1.64 (m, 3H)	149.9, 147.9, 144.9, 144.9, 144.5, 143.7, 142.2, 142.1 (C_q), 133.6, 128.1, 128.0, 127.9, 127.2, 127.1, 127.0, 126.7, 126.6, 126.3, 126.2, 124.7, 123.2, 122.9, 119.5, 119.2 (CH),48.2 (C_q), 47.3 (CH), 30.5, 22.8 (CH ₂), 22.3 (CH ₃), 17.5 (CH ₂)

cenkatalysatoren eingesetzt wurden [25,26]. NMR-spektroskopische Untersuchungen zeigen keine unterschiedlichen Bindungsverhältnisse zwischen isopropyliden- und methylphenylmethylenverbrückten Komplexen, so daß dieses Resultat offenbar kinetische Ursachen hat.

3. ExperimentellerTeil

3.1. NMR-Spektroskopie

Zur Aufnahme von NMR-Spektren standen die Geräte Jeol JNM-EX 270 E, Bruker ARX 250 und Bruker

Tabelle 2							
NMR-Daten	der	Verbindungen	$5 - 37/37^*$	[250.13	MHz (1 H),	69.2 MHz (¹³ C)]

	¹ H-NMR ^{a)}	¹³ C-NMR ^{a)}
Me ₃ Si 36/36* ^{e)}	8.09-7.98 (m, 1H), 7.73-7.58 (4H) ^d), 7.38-7.22 (5H) ^d), 7.13-7.08 (m, 1H), 6.86 (t, ${}^{3}J({}^{1}H, {}^{1}H)$ 7.5 Hz, 1H), 6.21-6.11 (m, 1H), 5.89-5.61 (m, 1H), 4.95-4.72 (3H) ^d), 3.50 (d, ${}^{3}J({}^{1}H, {}^{1}H)$ 2.2 Hz, 1H), 2.86 (dt, t: ${}^{3}J({}^{1}H, {}^{1}H)$ 11.1 Hz, d: ${}^{3}J({}^{1}H, {}^{1}H)$ 5.4 Hz, 1H), 2.24 (dt, t: ${}^{3}J({}^{1}H, {}^{1}H)$ 11.1 Hz, d: ${}^{3}J({}^{1}H, {}^{1}H)$ 5.4 Hz, 1H), 1.82 (m, 3H), 1.28-1.18 (m, 2H), 0.09 (s), 0.03 (s, 9H),	147.2, 146.1, 145.2, 145.0, 143.0, 142.7, 141.9 (C _q), 139.3, 139.2, 133.6, 127.0, 126.9, 126.9, 126.8, 126.7, 126.5, 126.2, 126.0, 125.8, 125.5, 124.8, 124.6, 123.7, 123.6, 123.5, 123.3, 121.9, 121.5, 119.6, 119.3, 118.8 (CH), 114.1, 113.8 (CH ₂), 54.7, 54.5 (CH), 44.2 (C _q), 43.9 (CH), 38.8, 29.8 (CH ₂), 18.3, -1.7, -1.9 (CH ₃)
37/37*°)	7.98 (d, ${}^{3}J({}^{1}H, {}^{1}H)$ 7.5 Hz, 1H), 7.78-7.68 (3H) ^d), 7.57-7.55 (m, 1H), 7.40-7.22 (m, 5H) ^d), 6.97 (t, ${}^{3}J({}^{1}H, {}^{1}H)$ 7.5 Hz, 1H), 6.83 (m), 6.52 (m, 1H), 6.11 (d, ${}^{3}J({}^{1}H, {}^{1}H)$ 2.0 Hz,), 6.07 (d, ${}^{3}J({}^{1}H, {}^{1}H)$ 2.0 Hz, 1H), 5.99-5.70 (m, 2H), 5.16-4.87 (m, 4H), 4.76 (d, ${}^{3}J({}^{1}H, {}^{1}H)$ 7.5 Hz), 3.91 (s, 1H), 3.70-3.45 (m, 1H), 2.69-2.61 (m, 2H), 2.34-2.29 (m, 2H), 2.20-2.05 (s, br, 3H), 1.85-1.53 (m, 4H)	149.5, 149.2, 147.8, 147.7, 145.0, 144.9, 144.9, 144.9, 144.8, 143.5, 143.4, 142.5, 141.8 (C_q), 139.3, 139.3, 138.6, 138.5, 127.1, 127.0, 126.9, 126.8, 126.7, 126.5, 126.1, 126.0, 125.7, 125.4, 125.0, 124.9, 124.3, 123.5, 121.8, 121.8, 119.8, 119.6, 119.0 (CH), 115.0, 114.7, 114.2, 114.1 (C_q), 54.4, 54.3, 47.8, 47.7 (CH), 44.0, 43.9 (C_q), 38.0, 36.9, 32.5, 31.3, 31.0, 30.8, 29.6, 29.3, 29.2 (CH ₂)

^{a)} in CDCl₃ (gesättigte Lösung) bei 25 ± 1°C; n.b., nicht bestimmt. ^{b)} auf eine Zuordung der ¹H-NMR-Signale im olefinischen Bereich wurde verzichtet. ^{c)} ¹³C nicht vollständig separiert aufgrund starker Signalüberlagerung. ^{d)} Als Verschiebungsbereich angegeben wegen starker Signalüberlagerung. ^{e)} Die vollständige spektroskopische Aufklärung der Isomerengemische der Ligandenvorstufen wurde nicht durchgeführt. ^{f)} δ ²⁹Si (**12**) = 4.7 ppm; δ ²⁹Si (**13**) = 4.2 ppm; δ ²⁹Si (**14**) = 5.9 ppm; δ ²⁹Si (**18/18***) = -6.3, -6.7 ppm; δ ²⁹Si (**32/32***) = 5.9, 5.1 ppm; δ ²⁹Si (**33/33***) = 5.3, 5.1, 4.7, 4.5 ppm; δ ²⁹Si (**36/36***) = 5.3, 4.9 ppm. ^{g)} keine weiteren C_g detektiert. ^{h)} Signal für C_{Me} nicht beobachtet.

DRX 500 zur Verfügung. Die Proben wurden unter Argon abgefüllt und routinemäßig in CDCl₃ bei 25°C gemessen. Die chemischen Verschiebungen beziehen sich in ¹H-NMR-Spektren auf das Restprotonensignal des Lösungsmittels ($\delta = 7.24$ für CHCl₃), in ¹³C-NMR-Spektren auf das Lösungsmittelsignal ($\delta = 77.0$ für CDCl₃) und in ²⁹Si-NMR-Spektren auf TMS extern ($\delta = 0.0$).

3.2. Massenspektroskopie

Routinemessungen erfolgten in der Zentralen Analytik der Universität Bayreuth an einem VARIAN MAT CH7-Gerät (Direkteinlaßsystem, Elektronenstoßionisation 70 eV). GC/MS-Spektren wurden an einem Varian 3700-Gaschromatographen, gekoppelt mit einem Varian MAT 312-Massenspektrometer, aufgenommen.

3.3. Gaschromatographie

Zur Analyse organischer Verbindungen wurde ein Gaschromatograph Carlo Erba HRGC mit Flammenionisationsdetektor verwendet. Der Gaschromatograph ist mit einer 30 m langen J&W Fused-Silica-Säule (DB1, Filmdicke 0.25 µm) ausgerüstet. Als Trägergas diente Helium; der Fluß durch die Säule betrug 3.8 ml/min, Split 1:30, Septumspülung 1.3 ml/min. Folgendes Temperaturprogramm wurde routinemäßig angewendet: 3 min bei 50°C (Startphase), 5°C/min (Aufheizphase), 15 min bei 310°C (Plateauphase). Die Retentionszeit wurde in Sekunden angegeben.

3.4. Synthese der Benzofulvene

3.4.1. Allgemeine Synthesevorschrift für die substituierten Benzofulvene 1 und 2/2*

16.3 ml (0.14 mol) Inden werden mit 0.17 mol des jeweiligen Ketons in 60 ml Methanol gelöst und dann mit 14.2 ml (0.17 mol) Pyrrolidin versetzt. Das Reaktionsgemisch wird über Nacht gerührt, mit 11.5 ml (0.2 mol) Eisessig behandelt und mit Wasser und Pentan ausgeschüttelt. Die organische Phase wird eingedampft, der Rückstand im HV destilliert. Die Ausbeuten liegen bei 80–90%.

6,6-Dimethyl-benzofulven (1)	Sdp. 82°C (HV, 10 ⁻²
	Torr), GC 1170 s
6-(3-Butenyl)-6-methyl-	Sdp. 118°C (HV, 10 ⁻²
benzofulven und Isomer	Torr), GC 1560 s
$(2/2^{*})$	

Tabelle 3

NMR-Daten der C₁-verbrückten metallocen dichloridkomplexe 38-64 [250.13 MHz (¹H), 69.2 MHz (¹³C)]

	¹ H-NMR ^{a,b)}	¹³ C-NMR ^{a)}
	8.03-7.88 (2H) ^{d)} , 7.53 (t, ${}^{3}J({}^{1}H,{}^{1}H)$ 7.6 Hz, 1H), 7.38-7.23 (6H) ^{d)} , 7.15-7.00 (2H) ^{d)} , 6.90-6.83 (m, 1H), 6.45 (d, ${}^{3}J({}^{1}H,{}^{1}H)$ 3.5 Hz, 1H), 6.05 (d, ${}^{3}J({}^{1}H,{}^{1}H)$ 3.5 Hz, 1H), 2.89 (s, 3H), 2.56 (s, 3H)	n.b ⁱ⁾ .
38 Ph 24-Cl 39/39* ^{j)}	8.10-7.93 (8H) ^{d)} , 7.60-6.81 (26H) ^{d)} , 6.58-6.57 (m, 2H), 6.21-6.19 (m, 2H), 3.05 (s, 3H), 2.70 (s, 3H)	^{c)} 130.9, 130.5 (C_q), 129.4, 128.9 (CH), 128.9 (C_q), 128.7, 127.8 (CH), 127.6 (C_q), 127.5, 127.4, 127.3, 127.0, 127.0, 126.9, 125.9, 125.8, 125.8, 125.3, 125.2, 125.1, 124.9, 124.8, 124.7, 124.5, 124.4, 124.4 (CH), 124.1 (C_q), 123.2 (CH), 122.1, 120.0 (C_q), 119.4, 119.2, 119.0, 109.8, 109.4, 108.0 (CH), 97.3, 96.2 (C_{q-ind}), 80.2, 78.3 (C_{q-flu}), 51.5, 49.8 (C_q , CMePh), 34.6, 31.1 (CH ₃)
40/40* ^{j)}	8.03-7.84 (4H) ^{d)} , 7.53 (t, ${}^{3}J({}^{1}H, {}^{1}H)$ 7.6 Hz, 1H), 7.38-7.20 (4H) ^{d)} , 7.15-7.01 (2H) ^{d)} , 6.85 (m, 1H), 6.48 (d, ${}^{3}J({}^{1}H, {}^{1}H)$ 3.5 Hz, 1H), 6.24-6.09 (m, 1H), 6,10 (d, ${}^{3}J({}^{1}H, {}^{1}H)$ 3.5 Hz, 1H), 5.30-5.17 (m, 2H), 3.99 (m, br, 1H), 2.92-2.74 (3H) ^{d)} , 2.59 (s, 3H)	^{e)} 137.9 (CH), 130.3 (C _q), 128.9, 126.2, 125.7, 125.5, 125.2, 125.1, 124.6, 124.3, 123.4, 123.2, 123.1 (CH), 123.1, 122.7, 120.9 (C _q), 115.6 (CH ₂), 108.9, 108.7 (CH), 98.6, 78.9, 47.2 (C _q), 38.2, 28.6 (CH ₂), 28.3 (CH ₃)
	8.02-7.94 (2H) ^{d)} , 7.87-7.80 (m, 1H), 7.50-7.39 (2H) ^{d)} , 7.28-6.97 (6H) ^{d)} , 6.84-6.80 (m, 1H), 5.87- 5.76 (m, 1H), 5.76 (s, 1H), 4.98-4.89 (m, 2H), 3.50- 3.41 (ABM , 1H), 3.22 (ABM , 1H), 2.87 (s, 3H), 2.51 (s, 3H)	135.8 (=CH), 128.8, 128.6 (CH), 128.5 (C_q) ^{e)} , 125.9 (CH), 125.6 (C_q), 125.6, 125.4, 125.1, 124.7, 124.6, 124.2, 123.7, 123.3 (CH), 122.9, 122.9, 122.6, 121.9 (C_q), 115.8 (=CH ₂), 109.6 (CH _{and}), 95.9 (C_{q-ind}), 79.0 (C_{q-flu}), 42.8 (C_q , CMe ₂), 32.0 (CH ₂), 31.5, 27.8 (CH ₃)
	8.05-8.00 $(2H)^{d_1}$, 7.89-7.82 $(2H)^{d_1}$, 7.53-7.45 (m, 1H), 7.35-7.17 $(3H)^{d_1}$, 7.12-6.98 $(3H)^{d_1}$, 6.85-6.80 (m, 1H), 5.78-5.62 (m, 1H), 5.75 (s, 1H), 4.99-4.89 (m, 2H), 2.89 (s, 3H), 2.85-2.73 (m, 1H), 2.63-2.53 (m, 1H), 2.53 (s, 3H), 2.19 (m, 2H)	137.6 (=CH), 128.8, 128.6 (CH), 128.5 (C _q), 125.9 (CH), 125.6 (C _q), 125.6, 125.4, 125.1, 125.0, 124.7, 124.6, 124.2, 123.7, 123.3 (CH), 122.9, 122.9, 122.6, 121.9 (C _q) ^c), 115.3 (=CH ₂), 109.6 (CH _{ind}), 95.9 (C _{q-ind}), 79.0 (C _{q-flu}), 42.8 (C _q , CMe ₂), 34.1 (CH ₂), 31.6, 28.0 (CH ₃), 27.2 (CH ₂)
43	7.92-7.82 (2H) ^{d)} , 7.75-7.69 (m, 1H), 7.60-7.43 (2H) ^{d)} , 7.38-7.31 (m, 1H), 7.19-6.84 (5H) ^{d)} , 6.72-6.67 (m, 1H), 5.69-5.55 (m, 1H), 5.60 (s, 1H), 4.91-4.76 (m, 2H), 2.76 (s, 3H), 2.67-2.50 (m, 1H), 2.40 (s, 3H), 2.35 (m, 1H), 2.13-1.77 (4H) ^{d)}	138.2 (=CH), 128.7, 128.5 (CH), 128.5 (C _q), 125.8 (CH), 125.6 (C _q), 125.5, 125.3, 125.0, 124.9, 124.7, 124.5, 124.1, 123.7, 123.2 (CH), 122.8, 122.7, 122.6, 122.5, 122.4 (C _q), 114.8 (=CH ₂), 109.5 (CH _{ind}), 96.0 (C _{q-ind}), 79.0 (C _{q-flu}), 42.7 (C _q , CMe ₂), 33.4 (CH ₂), 31.5 (CH ₃), 29.4 (CH ₂), 27.9 (CH ₃), 27.1 (CH ₂)
44	8.05-8.00 (2H) ^{d)} , 7.88-7.82 (m, 1H), 7.48 (t, ${}^{3}J({}^{1}H,{}^{1}H)$ 7.6 Hz, 1H), 7.32-7.17 (4H) ^{d)} , 7.12-6.97 (2H) ^{d)} , 6.81 (t, ${}^{3}J({}^{1}H,{}^{1}H)$ 6.6 Hz, 1H), 5.81-5.67 (m, 1H), 5.74 (s, 1H), 4.91 (m, 2H), 2.89 (s, 3H), 2.70 (m, 1H), 2.53 (s, 3H), 2.45 (m, 1H), 1.99 (m, 2H), 1.52-1.30 (4H) ^{d)}	138.6 (=CH), 128.7, 128.6 (CH), 128.4 (C_q), 125.8 (CH), 125.6 (C_q), 125.5, 125.4, 125.0, 124.9, 124.7, 124.5, 124.1, 123.7, 123.3 (CH), 122.9, 122.8, 122.5, 122.4 (C_q) ^{c)} , 114.4 (=CH ₂), 109.5 (CH _{ind}), 95.8 (C_{q-ind}), 78.9 (C_{q-flu}), 42.8 (C_q , CMe ₂), 33.4 (CH ₂), 31.5 (CH ₃), 29.7, 28.7 (CH ₂), 28.0 (CH ₃), 27.5 (CH ₂)

Tabelle 3 NMR-Daten der C₁-verbrückten metallocen dichloridkomplexe **38–64** [250.13 MHz (1 H), 69.2 MHz (13 C)]

	¹ H-NMR ^{a,b)}	¹³ C-NMR ^{a)}
Zz-CC MesSi	8.01-7.88 (5H) ^d), 7.53 (t, ${}^{3}J({}^{1}H,{}^{1}H)$ 7.6 Hz, 1H), 7.44 (d, ${}^{3}J({}^{1}H,{}^{1}H)$ 8.7 Hz, 1H), 7.27-7.17 (2H) ^d), 7.07-6.98 (2H) ^d), 6.91 (t, ${}^{3}J({}^{1}H,{}^{1}H)$ 7.7 Hz, 1H), 5.95 (s, 1H), 2.88 (s, 3H), 2.57 (s, 3H), 0.21 (s, 9H)	136.4 (C_q), 128.8, 128.3, 126.5, 126.0, 125.9, 125.8, 125.7 (CH), 125.5 (C_q), 125.2, 125.1, 124.2, 124.1 (CH), 123.4 (C_q), 123.2 (CH), 123.2, 122.5, 114.7 (C_q) ^{e)} , 113.9 (CH), 102.2 (C_{q-ind}), 79.5 (C_{q-ind}), 42.8 (C_q , CMe ₂), 31.4, 27.8, -0.7 (CH ₃)
45 ^{f)}		
Me Me 46 ^{fb}	7.99-7.83 (4H) ^d), 7.68-7.17 (5H) ^d), 7.09-7.03 (2H) ^d), 6.90 (m, 1H), 5.98 (s, 1H), 5.70-5.59 (m, 1H), 4.80- 4.73 (m, 2H), 2.89 (s, 3H), 2.57 (s, 3H), 3.50 (m, 2H), 0.29 (s, 3H), 0.19 (s, 3H)	136.4 (C _q), 134.7 (=CH), 128.7, 128.3, 126.7, 126.0, 125.9, 125.7, 125.7 (CH), 125.6 (C _q), 125.2, 125.1, 124.2, 124.1 (CH), 123.4 (C _q), 123.2 (CH), 123.1 122.4, 114.7 (C _q) ^c , 114.0 (CH _{ind}), 113.3 (=CH ₂), 102.2 (C _{q-ind}), 79.5 (C _{q-du}), 42.8 (C _q , CMe ₂), 31.3, 27.7 (CH ₃), 23.9 (CH ₂), -2.8, -3.6 (CH ₃)
	8.00-7.84 (4H) ^{d)} , 7.52 (t, ${}^{3}J({}^{1}H,{}^{1}H)$ 7.6 Hz, 1H), 7.42 (d, ${}^{3}J({}^{1}H,{}^{1}H)$ 8.7 Hz, 1H), 7.29-7.19 (3H) ^{d)} , 7.08-7.02 (m, 1H), 6.88 (t, ${}^{3}J({}^{1}H,{}^{1}H)$ 8.2 Hz, 1H), 5.94 (s, 1H), 5.78-5.67 (m, 1H), 4.98-4.85 (m, 2H), 2.89 (s, 3H), 2.57 (s, 3H), 1.97 (m, 2H), 1.39-1.15 (6H) ^{d)} , 0.27 (s, 3H), 0.16 (s, 3H)	139.0 (=CH), 136.4 (C _q), 128.7, 128.3, 126.7, 126.0, 125.9, 125.7, 125.7 (CH), 125.6 (C _q), 125.2, 125.1, 124.2, 124.1 (CH), 123.4 (C _q), 123.2 (CH), 123.1 122.4 (C _q) ^{e)} , 114.3 (=CH ₂), 114.1 (CH _{ind}), 102.2 (C _{q-ind}), 79.5 (C _{q-flu}), 42.9 (C _q , CMe ₂), 33.5, 32.8 (CH ₂), 31.4, 27.8 (CH ₃), 23.3, 15.9 (CH ₂), -2.5, -3.1 (CH ₃)
48	8.05-7.96 (2H) ^{d)} , 7.89-7.83 (2H) ^{d)} , 7.48 (t, ³ J (¹ H, ¹ H) 7.6 Hz, 1H), 7.32-7.17 (5H) ^{d)} , 7.12-6.97 (2H) ^{d)} , 6.82- 6.78 (m, 1H), 5.73 (s, 1H), 2.90 (s, 3H), 2.69-2.62 (m, 1H), 2.53 (s, 3H), 2.44 (m, 1H), 1.45-1.22 (4H) ^{d)} , 0.84 (d, ³ J (¹ H, ¹ H) 7.0 Hz, 3H, CH ₃)	129.1, 129.0 (CH), 128.4 (C_q), 125.8 (CH), 125.6 (C_q), 125.5, 125.4, 125.0, 124.9, 124.7, 124.5, 124.1, 123.7, 123.3 (CH), 122.9, 122.8, 122.5, 122.4 (C_q) ⁶), 110.0 (CH _{ind}), 95.8 (C_{q-ind}), 78.9 (C_q . f _i), 43.2 (C_q , CMe ₂), 32.9 (CH ₂), 32.0, 28.4 (CH ₃), 27.9, 23.1 (CH ₂), 14.3 (CH ₃)
49	8.02-7.95 (2H) ^{d)} , 7.86-7.82 (m, 1H), 7.68-7.63 (2H) ^{d)} , 7.48 (t, ${}^{3}J({}^{1}H, {}^{1}H)$ 7.6 Hz, 1H), 7.32-7.00 (5H) ^{d)} , 6.78 (t, ${}^{3}J({}^{1}H, {}^{1}H)$ 8.2 Hz, 1H), 5.72 (s, 1H), 2.90 (s, 3H), 2.65 (m, 1H), 2.53 (s, 3H), 2.45 (m, 1H), 1.45-1.10 (8H) ^{d)} , 0.87 (d, ${}^{3}J({}^{1}H, {}^{1}H)$ 7.0 Hz, 3H, CH ₃)	128.7, 128.6 (CH), 128.4 (C _q), 125.8 (CH), 125.6 (C _q), 125.5, 125.4, 125.0, 124.9, 124.7, 124.5, 124.1, 123.7, 123.3 (CH), 122.9, 122.8, 122.5, 122.4 (C _q) ^{e)} , 109.5 (CH _{ind}), 95.8 (C _{q-ind}), 78.9 (C _{q-fu}), 42.8 (C _q , CMe ₂), 31.5 (CH ₂), 31.5 (CH ₃), 30.2, 29.2, (CH ₂), 28.0 (CH ₃), 27.7, 22.5 (CH ₂), 14.0 (CH ₃)
	8.04 (d, ${}^{3}J({}^{1}H, {}^{1}H)$ 8.1 Hz, 1H), 7.97-7.15 (16H) ^{d)} , 5.77 (s, 1H), 4.10 (AB, ${}^{2}J({}^{1}H, {}^{1}H)$ 16.0 Hz, 1H, CH ₂), 3.80 (AB, ${}^{3}J({}^{1}H, {}^{1}H)$ 16.0 Hz, 1H, CH ₂), 2.88 (s, 3H), 2.50 (s, 3H),	140.2 (C _q), 129.1, 128.9, 128.8, 128.7, 126.6, 126.1, 125.5 (CH), 122.9, 122.9, 121.4, 120.2 (C _q), 119.4 (CH), 110.2 (CH), 79.0, 42.9 (C _q), 33.7 (CH ₂), 31.8, 28.0 (CH ₃) ¹⁾
50 50 51	8.04-7.94 (2H) ^{d)} , 7.87-7.76 (2H) ^{d)} , 7.63-7.55 (2H) ^{d)} , 7.49-6.95 (10H) ^{d)} , 6.75 (m, 1H), 5.61 (s, 1H), 2.99- 2.69 (4H, CH ₂ -CH ₂) ^{d)} , 2.88 (s, 3H), 2.47 (s, 3H)	141.9, 129.8, 129.4 $(C_q)^{e_1}$, 128.7, 128.6, 128.5, 128.3, 128.2, 126.0, 125.9, 125.5, 125.1, 125.0, 124.8, 124.6, 124.2, 123.6, 123.3 $(CH)^{e_1}$, 122.9, 122.8, 122.6, 122.4, 121.6 (C_q) , 119.6 (CH) , 117.4 (C_q) , 109.6 (CH) , 95.9 (C_{q-ind}) , 79.0 (C_{q-flu}) , 42.7 (C_q, CMe_2) , 36.1, (CH_2) , 31.5 (CH_3) , 29.7 (CH_2) , 28.0 (CH_3)

Tabelle 3 NMR-Daten der C₁-verbrückten metallocen dichloridkomplexe **38–64** [250.13 MHz (¹H), 69.2 MHz (¹³C)]

	¹ H-NMR ^{a,b)}	¹³ C-NMR ^{a)}
	8.03-7.99 (2H) ^{d)} , 7.85 (m, 1H), 7.58-7.40 (2H) ^{d)} , 7.32-6.99 (6H) ^{d)} , 6.85-6.82 (m, 1H), 5.81 (s, 1H), 3.50-3.37 (2H) ^{d)} , 3.24 (s, 3H), 3.18-3.10 (m, 1H), 2.76 (m, 1H), 2.00 (s, 3H), 1.52 (s, 3H)	127.3 127.2 (CH), 127.0 (C _q), 126.8, 126.4 (CH), 126.4 (C _q), 126.3, 126.0, 125.8, 125.8, 123.3 (CH), 122.9, 122.8, 122.7, 122.6, 122.4 (C _q), 119.2 (CH), 110.1 (CH _{ind}), 96.2 (C _{q-ind}), 81.7 (C _{q-flu}), 72.1 (CH ₂), 64.0 (CH ₃), 42.8 (C _q , CMe ₂), 27.9 (CH ₃), 25.8 (CH ₂), 25.6 (CH ₃)
52		
53/53* ^{j,k)}	7.99 (t, ${}^{3}J_{1}^{1}H_{1}^{1}H$) 8.8 Hz, 1H), 7.97-7.95 (2H) ^{d)} , 7.90 (d, ${}^{3}J_{1}^{1}H_{1}^{1}H$) 8.8 Hz, 2H), 7.80 (m, 1H), 7.60-7.20 (5H) ^{d)} , 7.16-7.05 (2H) ^{d)} , 6.97 (m, 1H), 6.91 (m, 1H), 6.85 (m, 1H), 6.76 (m, 1H), 6.55 (m, 1H), 6.20 (d, ${}^{3}J_{1}^{(1}H_{1}^{1}H)$ 5.0 Hz, 1H), 5.92 (s, 1H), 5.75 (s, 1H), 5.83 (m, 1H), 5.05-4.90 (2H) ^{d)} , 3.45-3.32 (2H) ^{d)} , 3.05 (s, 3H), 2.67 (s, 3H)	148.6, 145.4 (C_{q-ph}), 136.1, 135.8 (=CH), 129.4, 129.3, 129.2, 129.0, 128.9, 128.8, 127.9, 127.3, 127.3, 127.2, 126.7, 125.8, 125.4, 125.4, 125.1, 124.9, 124.8, 124.8, 124.6, 124.3, 124.2 (CH), 123.8, 123.7, 123.3 (C_q), 123.2, 123.1 (CH), 122.4, 122.2, 120.8, 120.6, 119.8 (C_q), 116.1, 116.1 (=CH ₂), 111.1, 111.0 (CH _{ind}), 94.5, 93.6 (C_{q-ind}), 79.0 (C_{q-fu}), 53.4, 51.2 (C_q , CMePh), 34.6, 31.3 (CH ₃), 32.3, 32.1 (CH ₂)
₩ ₽ 2 4	8.11-8.01 (3H) ^{d)} , 7.93 (2H) ^{d)} , 7.80 (m, 1H), 7.61- 7.51 (2H) ^{d)} , 7.47-7.38 (4H) ^{d)} , 7.24-7.21 (2H) ^{d)} , 7.07 (m, 1H), 6.87-6.79 (2H) ^{d)} , 6.19 (d, ${}^{3}J({}^{1}\text{H}, {}^{1}\text{H})$ 8.9 Hz, 1H, CH _{flu}), 5.74 (m, 1H), 5.72 (s, 1H), 4.94 (m, 2H), 3.05 (s, 3H, CH ₃), 2.78 (m, 1H), 2.46 (m, 1H), 2.32- 2.05 (2H) ^{d)}	148.6 (C_{q-ph}), 137.6 (=CH), 129.3, 129.2, 128.9, 128.7 (CH), 127.4 (C_q), 127.1 (CH), 126.7 (C_q), 126.6, 125.8, 125.3, 124.9, 124.8, 124.5, 124.2, 124.1, 123.9 (CH) ^c), 123.6, 122.8, 122.5, 121.9, 120.6 (C_q), 115.3 (=CH ₂), 110.9 (CH _{ind}), 93.3 (C_q - ind), 79.0 (C_q -fu), 52.3 (C_q , CMePh), 33.7 (CH ₂), 31.1 (CH ₃), 26.8 (CH ₂)
0 Ph→ ph→ ph→ ph→ ph→ ph→ ph→ ph→ p	7.98-7.88 (3H) ^{d)} , 7.82-7.78 (2H) ^{d)} , 7.68 (m, 1H), 7.50-7.36 (2H) ^{d)} , 7.33-7.18 (4H) ^{d)} , 7.11-7.04 (2H) ^{d)} , 6.92 (m, 1H), 6.78-6.68 (2H) ^{d)} , 6.06 (d, ${}^{3}J({}^{1}H, {}^{1}H) $ 8.9 Hz, 1H, CH _{flu}), 5.60 (m, 1H), 5.57 (s, 1H), 4.82 (m, 2H), 2.91 (s, 3H), 2.56 (m, 1H), 2.20 (m, 1H), 1.93- 1.84 (2H) ^{d)} , 1.52-1.33 (2H) ^{d)}	148.6 (C_{q-ph}), 138.2 (=CH), 129.3, 129.2, 128.9, 128.7 (CH), 127.8 (C_q), 127.2 (CH), 126.7 (C_q), 126.6, 125.7, 125.3, 124.9, 124.7, 124.5, 124.5, 124.2, 124.0 (CH), 123.7, 123.2, 122.9, 121.9, 120.6 (C_q), 114.8 (=CH ₂), 110.8 (CH _{ind}), 93.3 (C_q . ind), 79.0 (C_{q-flu}), 52.4 (C_q , CMePh), 33.4 (CH ₂), 31.2 (CH ₃), 29.0, 27.0 (CH ₂)
Phylorefore Phylorefore 56	8.11-8.01 (2H) ^{d)} , 7.96 (m, 1H), 7.82-7.31 (9H) ^{d)} , 7.12 (m, 1H), 6.95-6.81 (2H) ^{d)} , 6.55-6.50 (m, 1H), 6.20 (d, ${}^{3}\!/({}^{1}\!H,{}^{1}\!H)$ 8.9 Hz, 1H, CH _{du}), 5.87 (s, 1H), 5.77 (m, 1H), 4.95 (m, 2H), 3.04 (s, 3H), 2.21-1.99 (2H) ^d , 1.71-1.32 (6H) ^d	148.7 (C_q), 138.7 (=CH), 129.3, 129.3, 129.0, 128.7 (CH), 127.9 (C_q), 127.2, 126.9 (CH), 126.7 (C_q), 126.1, 125.8, 125.4, 125.0, 124.8, 124.6, 124.4, 124.3, 124.1 (CH), 123.7, 123.3, 123.1, 122.0, 120.7 (C_q), 114.4 (=CH ₂), 110.9 (CH _{ind}), 93.6 ($C_{q,ind}$), 79.0 (C_{q-flu}), 52.4 (C_q , CMePh), 33.4 (CH ₂), 31.3 (CH ₃), 29.3, 28.7, 27.4 (CH ₂)
Physical Strength Str	8.08-7.95 (4H) ^{d)} , 7.55-7.43 (8H) ^{d)} , 7.33-7.12 (3H) ^{d)} , 6.98 (m, 1H), 6.83 (m, 1H), 6.21 (d, ${}^{3}J({}^{1}H, {}^{1}H)$ 8.9 Hz, 1H, CH _{flu}), 5.97 (s, 1H, CH _{ind}), 3.05 (s, 3H), 0.17 (s, 9H)	148.7 (C_{q-ph}), 135.1 (C_q), 129.3, 129.2, 129.0, 128.9, 127.2, 126.9, 126.8 (CH), 126.7, 126.2 (C_q), 125.8, 125.7, 125.3, 124.8, 124.5, 124.3 (CH), 123.9, 122.3, 120.3, 115.8 (C_q) ^(c) , 115.2 (CH _{ind}), 99.6 (C_{q-ind}), 79.3 (C_{q-flu}), 52.5 (C_q , CMePh), 31.1, -0.7 (CH ₃)

3.4.2. Allgemeine Synthesevorschrift für die substituierten Benzofulvene 3/3* und 4

60 ml Ethanol werden mit 3.22 g (0.14 mol) Natriumstaub versetzt und in die noch warme Ethanolatlösung 0.14 mol des ensprechenden Ketons gegeben. Dann wird zu dieser Mischung 32.6 ml (0.28 mol) Inden getropft und das Reaktionsgemisch 15 h unter Rückfluß gerührt, bis das Keton vollständig verbraucht ist. Nach Verdünnen mit Wasser und Extraktion mit Pentan wird die organische Phase verdampft, das überschüssige Inden durch HV-Destillation aus dem Reaktionskolben entfernt und der Rückstand in Pentan über Kieselgel filtriert. Das Fulven bleibt nach Verdampfen des Lösungsmittels im Kolben zurück. Die Ausbeuten liegen bei 90%. Tabelle 3 NMR-Daten der C,-verbrückten metallocen dichloridkomplexe 38-64 [250.13 MHz (¹H), 69.2 MHz (¹³C)]

58 ^{°)} ^{Ph} / _{Me} 58 ^{°)} ^{Ph} / _{Me} 58 ^{°)} ^{Ph} / ₂ ^C ^C ^{Ph} / ₂ ^C 	8.08-7.95 (5H) ^d , 7.78 (m, 1H), 7.59-7.43 (5H) ^d , 7.33 (m, 1H), 7.21-7.12 (2H), 6.99 (m, 1H), 6.85 (m, 1H), 6.19 (d, ${}^{3}J_{(}^{1}H, {}^{1}H)$ 8.9 Hz, 1H, CH _{flu}), 5.99 (s, 1H, CH _{ind}), 5.65 (m, 1H), 4.73 (m, 2H), 3.05 (s, 3H), 1.64 (m, 2H), 0.28 (s, 3H), 0.08 (s, 3H) 8.12-8.01 (2H) ^d , 7.96-7.92 (2H) ^d , 7.80 (m, 1H), 7.58-7.24 (9H) ^d , 7.09 (m, 1H), 6.94-6.86 (2H) ^d , 6.21 (d, ${}^{3}J_{(}^{1}H, {}^{1}H)$ 8.9 Hz, 1H, CH _{du}), 5.71 (s, 1H, CH _{ind}), 3.06 (s, 3H), 2.68 (m, 1H), 2.33 (m, 1H), 1.45-1.27 (4H) ^d , 0.90 (d, ${}^{3}J_{(}^{1}H, {}^{1}H)$ 6.9 Hz, 3H, CH ₃) 8.12-8.01 (2H) ^d , 7.96-7.92 (2H) ^d , 7.80 (m, 1H), 7.58-7.24 (9H) ^d , 7.96-7.92 (2H) ^d , 7.80 (m, 1H),	148.6 (C_{q-ph}), 134.8 (C_q), 134.7 (=CH), 129.3, 129.0, 128.9, 127.2, 127.0 (CH), 126.8 (C_q), 126.8 (CH), 126.5 (C_q), 125.8, 125.3, 124.8, 124.5, 124.3, 124.1 (CH) ^{e)} , 124.0, 123.0, 121.5 (C_q), 115.5 (CH _{ind}), 113.8, (=CH ₂), 99.7 ($C_{q,ind}$), 79.5 (C_{q-fu}), 52.4 (C_q , CMePh), 30.7 (CH ₃), 24.0 (CH ₂), -2.5, -3.1 (CH ₃) 149.2 (C_{q-ph}), 129.7, 129.7, 129.4, 129.2 (CH), 127.9 (C_q), 127.6 (CH), 127.1 (C_q), 127.1, 126.2, 125.8, 125.3, 125.2, 125.0, 125.0, 124.6, 124.5 (CH) ^{e)} , 124.3, 124.2, 123.4, 122.4, 121.1 (C_q), 111.3 (CH _{ind}), 93.7 (C_{q-ind}), 79.1 (C_{q-fu}), 52.9 (C_q , CMePh), 32.6 (CH ₂), 31.7 (CH ₃), 27.8, 23.1
59 Ph ph ph ph ph ph ph ph ph ph p	8.12-8.01 (2H) ^{d)} , 7.96-7.92 (2H) ^{d)} , 7.80 (m, 1H), 7.58-7.24 (9H) ^{d)} , 7.09 (m, 1H), 6.94-6.86 (2H) ^{d)} , 6.21 (d, ${}^{3}J({}^{1}H, {}^{1}H)$ 8.9 Hz, 1H, CH ₀ , 5.71 (s, 1H, CH _{ind}), 3.06 (s, 3H), 2.68 (m, 1H), 2.33 (m, 1H), 1.45-1.27 (4H) ^{d)} , 0.90 (d, ${}^{3}J({}^{1}H, {}^{1}H)$ 6.9 Hz, 3H, CH ₃) 8.12-8.01 (2H) ^{d)} , 7.96-7.92 (2H) ^{d)} , 7.80 (m, 1H), 7.58-7.24 (9H) ^{d)} , 7.09 (m, 1H), 6.94-6.86 (2H) ^{d)}	149.2 ($C_{q,ph}$), 129.7, 129.7, 129.4, 129.2 (CH), 127.9 (C_{q}), 127.6 (CH), 127.1 (C_{q}), 127.1, 126.2, 125.8, 125.3, 125.2, 125.0, 125.0, 124.6, 124.5 (CH) ⁶), 124.3, 124.2, 123.4, 122.4, 121.1 (C_{q}), 111.3 (CH _{ind}), 93.7 (C_{q-ind}), 79.1 (C_{q-flu}), 52.9 (C_{q} , CMePh), 32.6 (CH ₂), 31.7 (CH ₃), 27.8, 23.1
	8.12-8.01 $(2H)^{d}$, 7.96-7.92 $(2H)^{d}$, 7.80 (m, 1H), 7.58-7.24 $(9H)^{d}$, 7.09 (m, 1H), 6.94-6.86 $(2H)^{d}$	$(CH_2), 14.3 (CH_3)$
	$\begin{array}{c} \textbf{6.21} (d, \ ^{3}\textit{J}(^{1}\textrm{H}, ^{1}\textrm{H}) \ 8.9 \ \textrm{Hz}, \ 1\textrm{H}, \ \textbf{CH}_{0u} \textbf{)}, \ 5.71 \ (\textrm{s}, \ 1\textrm{H}, \\ \textbf{CH}_{ind} \textbf{)}, \ 3.06 \ (\textrm{s}, \ 3\textrm{H}), \ 2.68 \ (\textrm{m}, \ 1\textrm{H}), \ 2.33 \ (\textrm{m}, \ 1\textrm{H}), \\ 1.45\text{-}1.27 \ (\textrm{8H})^{\textrm{d}} \textbf{)}, \ 0.90 \ (d, \ \ ^{3}\textit{J}(^{1}\textrm{H}, ^{1}\textrm{H}) \ 6.9 \ \textrm{Hz}, \ 3\textrm{H}, \\ \textbf{CH}_{3} \textbf{)} \end{array}$	n.b.
64% / 36%	8.12-8.04 (2H) ^{d)} , 8.00-7.88 (2H) ^{d)} , 7.80 (m, 1H), 7.62-7.40 (4H) ^{d)} , 7.37-7.11 (9H) ^{d)} , 7.08-6.97 (2H) ^{d)} , 6.94-6.74 (2H) ^{d)} , 6.55 (m, 1H), 6.16 (d, ${}^{3}J({}^{1}H, {}^{1}H)$ 9.0 Hz, 1H), 5.94 (s, 0.64H), 5.77 (s, 0.36H), 4.12 (AB, ${}^{3}J({}^{1}H, {}^{1}H)$ 15.9 Hz, 1H), 4.04 (AB, ${}^{3}J({}^{1}H, {}^{1}H)$ 16.1 Hz, 1H), 3.91 (AB, ${}^{3}J({}^{1}H, {}^{1}H)$ 15.9 Hz, 1H), 3.65 (AB, ${}^{3}J({}^{1}H, {}^{1}H)$ 16.1 Hz, 1H), 3.05 (s, 1.1H, CH ₃), 2.64 (s, 1.9H, CH ₃)	^{e)} 148.5, 145.4 ($C_{q,ph}$), 140.3, 140.3 (C_q), 129.3, 129.2, 129.1, 128.9, 128.7, 128.5, 128.4, 128.3, 128.2, 127.9, 127.6, 127.4, 127.2, 127.0, 126.8, 126.2, 125.6, 125.4, 125.1 (CH), 124.9 (C_q), 124.6, 124.5, 124.4, 124.2 (CH), 123.7, 123.7, 123.3 (C_q), 123.2, 123.1 (CH), 123.1, 122.1, 121.0, 120.3 (C_q), 111.6, 111.2 (CH _{ind}), 94.7, 93.9 (C_{q-ind}), 79.0, 77.1 (C_{q-flu}), 52.5, 51.3 (C_q , CMePh), 34.7, 31.2 (CH ₃), 33.8 (CH ₂)
P ⁱ → 2 ² ⊂ ^Q 62/62 ^{×j)}	8.11-7.85 (4H) ^d , 7.60-6.72 (16H) ^d , 6.56-6.48 (m, 1H), 5.91 (s, 0.65H), 5.75 (s, 0.35H), 3.01-2.64 (4H, $CH_2-CH_2)^{d}$, 2.93 (s, 1.1H, CH_3), 2.50 (s, 1.9H, CH_3)	^{e)} 148.4, 145.3 (C_{q-ph}), 140.3, 139.9 (C_q), 129.4, 129.3, 129.2, 129.0, 128.8, 128.7, 128.4, 128.3, 128.3, 128.1, 127.8, 127.5, 127.3, 127.2, 126.9, 126.7, 126.1, 126.1, 125.6, 125.5, 125.3, 125.0, 124.9, 124.8 (CH), 124.5 (C_q), 124.4, 124.3, 124.2, 124.1, 124.0 (CH), 123.6, 123.5, 123.2 (C_q), 123.2, 123.0 (CH), 122.0, 121.7, 120.9, 120.6, 120.2 (C_q), 111.5, 111.1 (CH _{ind}), 94.7, 93.7 (C_{q-inf}), 80.2, 77.2 (C_{q-du}), 52.4, 51.2 (C_q , CMePh), 34.6, 31.1 (CH ₃), 33.7 (CH ₂)
63/63* ^{f,j}	8.02-7.95 (2H) ^d), 7.84 (m, 1H), 7.68-7.63 (2H) ^d), 7.48 (t, ${}^{3}\mathcal{J}({}^{1}\text{H}, {}^{1}\text{H})$ 7.6 Hz, 1H), 7.32-7.00 (5H) ^d), 6.91-6.87 (2H) ^d), 6.13 (m, 1H), 6.03 (s, 0.5H), 6.00 (s, 0.5H), 5.20 (m, 2H), 2.92 (s, 1.5H), 2.60 (s, 1.5H), 2.78-2.74 (2H) ^d), 1.18-1.11 (2H) ^d), 0.22 (s, 4.5H), 0.14 (s, 4.5H)	^{c)} 138.8, 137.9 (=CH), 129.3 (C_{q}), 129.2, 129.0, 128.8, 128.6 (CH), 126.8 (C_{q}), 126.6, 126.4, 126.2, 125.7 (CH), 125.6 (C_{q}), 125.4, 125.1 (CH), 124.9, 123.3 (C_{q}), 123.2 (CH), 123.2, 122.9 (C_{q}), 119.6 (CH ₂), 115.5 (CH ₂), 114.3, 113.3 (CH _{ind}), 101.8 (C_{q-ind}), 78.5 (C_{q-flu}), 41.1 (C_{q} , CMePh), 38.1, 28.1 (CH ₂), 28.1, 24.6, 0.4, -0.7 (CH ₃)
64 ^k	8.10 (d, ${}^{3}J({}^{1}H, {}^{1}H)$ 8.2 Hz, 1H), 8.00 (d, ${}^{3}J({}^{1}H, {}^{1}H)$ 8.3 Hz, 1H), 7.96 (d, ${}^{3}J({}^{1}H, {}^{1}H)$ 7.4 Hz, 1H), 7.88 (d, ${}^{3}J({}^{1}H, {}^{1}H)$ 8.2 Hz, 1H), 7.84 (d, ${}^{3}J({}^{1}H, {}^{1}H)$ 9.0 Hz, 1H), 7.51 (t, ${}^{3}J({}^{1}H, {}^{1}H)$ 7.6 Hz, 1H), 7.35 (d, ${}^{3}J({}^{1}H, {}^{1}H)$ 8.8 Hz, 1H), 7.27 (t, ${}^{3}J({}^{1}H, {}^{1}H)$ 7.6 Hz, 1H), 7.20 (t, ${}^{3}J({}^{1}H, {}^{1}H)$ 7.6 Hz, 1H), 7.13 (t, ${}^{3}J({}^{1}H, {}^{1}H)$ 7.6 Hz, 1H), 6.98 (t, ${}^{3}J({}^{1}H, {}^{1}H)$ 8.0 Hz, 1H), 6.83 (t, ${}^{3}J({}^{1}H, {}^{1}H)$ 8.0 Hz, 1H), 5.59 (s, 1H), 2.87 (m, 1H), 2.80 (s, 3H), 2.78 (m, 1H), 2.40 (s, 3H), 1.83 (2H) ^d , 1.20 (m, 1H), 1.09 (m, 1H), 0.20 (m, 1H), -2.27 (m, 1H)	128.1, 127.1 (CH), 126.5, 126.5 (C_q), 124.8, 124.7, 124.2, 124.1, 123.9, 123.8, 123.7, 123.7, 123.4 (CH), 122.8 (C_q), 122.3 (CH), 122.0, 121.1, 120.4, 114.5 (C_q), 107.3 (CH _{ind}), 94.7 (C_{q-ind}), 78.4 (C_q - $n_{0\nu}$), 67.3 (CH ₂), 42.7 (C_q , CMePh), 31.6 (CH ₃), 28.8 (CH ₂), 27.9 (CH ₃), 27.6, 25.1 (CH ₂)

Abb. 3. 500.13 MHz ¹H-NMR-Spektrum von 64 (25% v/v in CDCl₃). Eindeutig zu erkennen sind die beiden unterschiedlichen Methylgruppen der C_1 -Brücke, sowie das Singulett für H(16) des Indenylidenliganden. Bemerkenswert ist die durch den darüberliegenden Benzoring induzierte Hochfeldverschiebung eines Zr-C-(¹H)₂-Protons (20) der Butyleneinheit.

e

6-Methyl-6-phenyl-benzofulven	rotes Öl. GC 1822
and Isomer (3/5)	$218 (M^+)$
6,6-Diphenyl-benzofulven (4)	gelber Feststoff.
	GC 2444 s. MS,
	<i>m/e</i> 280 (M ⁺)

3.5. Allgemeine Synthesevorschrift für die C_1 -verbrückten Ligandenvorstufen des Typs FluCRR'lnd (R, R' =Alkyl, Alkenyl, Aryl) 5–7

6.0 g (36 mmol) Fluoren werden in 100 ml Diethylether gelöst und bei Raumtemperatur langsam mit 22.5 ml (36 mmol) n-Butyllithium (1.6 M in Hexan) versetzt. Das Reaktionsgemisch wird mindestens sechs Stunden gerührt. Die äquimolare Menge des jeweiligen Benzofulvenderivates wird zugegeben und über Nacht gerührt. Zur Aufbereitung wird mit 50 ml Wasser hydrolysiert, die organische Phase über Natriumsulfat getrocknet und das Lösungsmittel im Vakuum eingedampft. Der Rückstand wird in Pentan gelöst, die Lösung über Kieselgel filtriert und bei - 18°C auskristallisiert. Die Ausbeuten liegen zwischen 70-90%.

2-(9-Fluorenyl)-2-(1-indenyl)-	farblose Kristalle, GC
propan (5)	2640 s. MS, <i>m/e</i> 322
	(M^{+})
1-(9-Fluorenyl)-1-(1-indenyl)-	farbloses Pulver. GC
1-phenylethan und Isomer	3108 s
(6/6*)	
5-(9-Fluorenyl)-5-(1-indenyl)-	farblose Kristalle. GC
1-hexen und Isomer $(7/7^*)$	2820 s. MS, m/e
	362(M ⁺), Schmp.:
	142–145°C

3.6. Allgemeine Synthesevorschrift für die C₁-verbrückten Ligandenvorstufen des Typs FluCRR'Ind' (R, R' = Alkyl, Alkenyl, Aryl; Ind' = substituiertes Indenvl) 8–37

6.0 g (36 mmol) Fluoren werden in 100 ml Diethylether gelöst und bei Raumtemperatur langsam mit 22.5 ml (36 mmol) *n*-Butyllithium (1.6 M in Hexan) versetzt. Das Reaktionsgemisch wird mindestens sechs Stunden gerührt. Die äquimolare Menge des jeweiligen Benzofulvenderivates wird zugegeben und über Nacht gerührt, auf - 78°C abgekühlt, mit 36 mmol des entsprechenden Alkyl-, Alkenyl- oder Silylhalogenids

Abb. 4. Vergrößung des Aromatenbereichs von 64. Gut zu erkennen ist die unterschiedliche Linienaufspaltung infolge von ${}^{3}J({}^{1}H,{}^{1}H)$ Spin-Spin-Kopplungen. Das Dublett bei $\delta = 7.38$ ppm läßt sich eindeutig H(14) des Indenylidenliganden zuordnen. S kennzeichnet CHCl₃.

Abb. 5. Konturplot eines 500.13 MHz 2D-¹H,¹H-Cosy-DQF (phasensensitiv) Experiments (512 Experimente zu je acht Akkumulationen; Auflösung F1: 13.2 Hz F2: 3.3 Hz; Gesamtmeßzeit 3 h). Die Projektionen für F1 und F2 entstammen den 1D-¹H-NMR-Spektren. Gesamt-Konturplot. Kreuzsignale basieren auf ${}^{2}J({}^{1}\text{H},{}^{1}\text{H})$ und ${}^{3}J({}^{1}\text{H},{}^{1}\text{H})$ für den Alkylbereich und ${}^{3}J({}^{1}\text{H},{}^{1}\text{H})$ für den Olefinbereich.

Abb. 6. Konturplot eines 500.13 MHz 2D-¹H,¹H-Cosy-DQF (phasensensitiv) Experiments (512 Experimente zu je acht Akkumulationen; Auflösung F1: 13.2 Hz F2: 3.3 Hz; Gesamtmeßzeit 3 h). Die Projektionen für F1 und F2 entstammen den 1D-¹H-Spektren. Vergrößerung des Olefinbereichs. Es ergeben sich drei Resonanzgruppen zu je vier Signalen für die unterschiedlichen Benzoringe. Die Resonanzen 11–14 bezeichnen die Protonen des Indenylidenliganden, die Resonanzen 1–8 die des Fluorenylidenliganden.

versetzt und 15 h bei Raumtemperatur gerührt. Das Reaktionsgemisch wird mit 50 ml Wasser hydrolysiert, die organische Phase über Natriumsulfat getrocknet und das Lösungsmittel im Vakaum eingedampft. Zur Reinigung wird der Rückstand in Pentan gelöst, die Lösung über Kieselgel filtriert und bei – 18°C kristallisiert. Die Ausbeuten liegen zwischen 70–90%.

3.7. Allgemeine Synthesevorschrift für die C_1 -verbrückten Metallocenkomplexe **38–63**

3.0 mmol der entsprechenden Ligandenvorstufe werden in 40 ml Diethylether gelöst und mit zwei Äquivalenten *n*-Butyllithium (1.6 M in Hexan) mindestens acht Stunden bei Raumtemperatur gerührt.

2-(9-Fluorenyl)-2-[1-(3-allyl)-indenyl]propan (8)	GC 2830 s. MS, m/e 362 (M ⁺)
2-(9-Fluorenyl)-2-{1-[3-(3-butenyl)]-indenyl}propan (9)	GC 3000 s. MS, m/e 376 (M ⁺)
2-(9-Fluorenyl)-2-{1-[3-(4-pentenyl)]-indenyl}propan (10)	MS, m/e 390 (M ⁺)
2-(9-Fluorenyl)-2-{1-[3-(5-hexenyl)/-indenyl}propan (11)	GC 3160 s. MS, m/e 404 (M ⁺)
2-(9-Fluorenyl)-2-[1-(3-trimethylsilyl)-indenyl]propan (12)	GC 2922 s. MS, <i>m</i> / <i>e</i> 394 (M ⁺)
2-(9-Fluorenyl)-2-[1-(3-allyldimethylsilyl)-indenyl]propan (13)	GC 3133 s
2-(9-Fluorenyl)-2-{1-[3-(5-hexenyldimethylsilyl)]-indeyl}propan (14)	GC 3600 s. MS, m/e 462 (M ⁺)
2-(9-Fluorenyl)-2-[1-(3-butyl)-indenyl}propan (15)	GC 3083 s MS, m/e 378 (M ⁺)
2-(9-Fluorenyl)-2-[1-(3-hexyl)-indenyl}propan (16)	GC 3164 s. MS, m/e 406 (M ⁺)
2-(9-Fluorenyl)-2-{1-[3-(2-methoxyethyl)]-indenyl}propan (17)	GC 2994 s. MS, <i>m</i> / <i>e</i> 380 (M ⁺)
2-(9-Fluorenyl)-2-[1-(3-methyldiphenylsilyl)-indenyl]propan (18)	MS, m/e 558 (M ⁺)
2-(9-Fluorenyl)-2-{1-[3-(3-cyanopropyl)]-indenyl}propan (19)	GC 3180 s. MS, m/e 389 (M ⁺)
2-(9-Fluorenyl)-2-{1-[3-(2-propinyl)]-indenyl}propan (20)	GC 3475 s. MS, <i>m</i> / <i>e</i> 361 (M ⁺)
2-(9-Fluorenyl)-2-[1-(3-benzyl)-indenyl]propan (21)	GC 3300 s. MS, <i>m/e</i> 412 (M ⁺)
2-(9-Fluorenyl)-2-{1-[3-(2-phenyl-ethyl)]-indenyl}propan (22)	GC 3360 s. MS, m/e 426 (M ⁺)
1-(9-Fluorenyl)-1-[1-(3-allyl)-indenyl]-1-phenylethan und Isomer (23/23*)	GC 3050 s. MS, m/e 424 (M ⁺)
1-(9-Fluorenyl)-1-{1-[3-(3-butenyl)]-indenyl}-1-phenylethan und Isomer (24/24*)	GC 3179 s. MS, <i>m</i> / <i>e</i> 438 (M ⁺)
1-(9-Fluorenyl)-1-{1-[3-(4-pentenyl)]-indenyl}-1-phenylethan und Isomer	MS, m/e 452 (M ⁺)
(25/25*)	
1-(9-Fluorenyl)-1-{1-[3-(5-hexenyl)]-indenyl}-1-phenylethan und Isomer (26/26*)	GC 3366 s. MS, m/e 467 (M)
1-(9-Fluorenyl)-1-[1-(3-butyl)-indenyl]-1-phenylethan und Isomer (27/27*)	GC 3222 s
1-(9-Fluorenyl)-1-[1-(3-hexyl)-indenyl]-1-phenylethan und Isomer (28/28*)	GC 3242 s. MS, <i>m</i> / <i>e</i> 468 (M ⁺)
1-(9-Fluorenyl)-1-{1-[3-(2-propinyl)]-indenyl}-1-phenylethan und Isomer (29/29*)	GC 3090 s. MS, <i>m</i> / <i>e</i> 422 (M ⁺)
1-(9-Fluorenyl)-1-[1-(3-benzyl)-indenyl]-1-phenylethan und Isomer (30/30*)	GC 3504 s
1-(9-Fluorenyl)-1-{1-[3-(2-phenyl-ethyl)]-indenyl}-1-phenylethan und Isomer (31/31*)	GC 3640 s. MS, <i>m</i> / <i>e</i> 488 (M ⁺)
1-(9-Fluorenyl)-1-[1-(3-trimethylsilyl)-indenyl]-1-phenylethan und Isomer (32/32*)	GC 3138 s. MS, m/e 456 (M ⁺)
1-(9-Fluorenyl)-1-[1-(3-allyldimethylsilyl)-indenyl]-1-phenylethan und Isomer	GC 3090 s
(33/33*)	
1-(9-Fluorenyl)-1-{1-[3-(2-methoxyethyl)]-indenyl}-1-phenylethan und Isomer (34/34*)	GC 3198 s. MS, m/e 442 (M ⁺)
1-(9-Fluorenyl)-1-7{1-[3-(3-cyanopropyl)]-indenyl}-1-phenylethan und Isomer (35/35*)	GC 3340 s. MS, <i>m</i> / <i>e</i> 451 (M ⁺)
5-(9-Fluorenyl)-5-[1-(3-trimethylsilyl)-indenyll-1-hexen und Isomer (36/36 *)	GC 2910 s. MS m/e 389 (M ⁺)
5-(9-Fluorenyl)-5-{1-[3-(3-butenyl)]-indenyl}-1-hexen und Isomer (37/37*)	GC 3120 s. MS, m/e 416 (M ⁺)

Dann wird ein Äquivalent Zirconium- bzw. Hafniumtetrachlorid zugegeben und über Nacht gerührt. Die Aufarbeitung richtet sich nach der Löslichkeit des Produktes: bei etherlöslichen Komplexen kann direkt vom entstandenen Lithiumchlorid abfiltriert werden. Bei schwer löslichen Komplexen wird entweder das Lösungsmittel abgezogen und der Rückstand mit Methylenchlorid extrahiert oder man filtriert über Natriumsulfat, löst das Produkt mit Methylenchlorid oder Toluol und verdampft dann das Lösungsmittel.

$2-\eta^{3}-(9-\text{Fluorenyliden})-2-\eta^{3}-(1-\text{indenyliden})\text{propan-zirconiumdichlorid}$ (38)	violette Kristalle, MS, m/e 482 (M ⁺)
$1-\eta^3-(9-\text{Fluorenyliden})-1-\eta^3-(1-\text{indenyliden})$	violette Kristalle, MS, m/e 544 (M ⁺)
-1-phenylethan-zirconiumdichlorid (39/39*)	
$5-\eta^3$ -(9-Fluorenyliden)- $5-\eta^3$ -(1-indenyliden)-1-hexen-zirconiumdichlorid	violette Kristalle, MS, m/e 522 (M ⁺)
(40/40*)	
$2-\eta^3$ -(9-Fluorenyliden)- $2-\eta^3$ -[1-(3-allyl) indenyliden]propan-	violette Kristalle, MS, m/e 522 (M ⁺)
zirconiumdichlorid (41) $2 - \frac{3}{2} (0)$ Electronylider (41) $2 - \frac{3}{2} (1 + 12) (2 + 12 + 12) (1 + 12) (2 + 12 + 12) (1 + $	
$2-\eta^{2}$ -(9-Fluorenyliden)- $2-\eta^{2}$ -{1-[3-(3-butenyl)]indenyliden}	violette Kristalle, MS, m/e 536 (M ⁺)
propan-zirconnuniciciiona (42) $2 \cdot n^3 \cdot (0 \cdot \text{Fluorenyliden}) \cdot 2 \cdot n^3 \cdot (1 - [3 \cdot (1 - \text{pentenyl})] indenyliden}$	violette Kristalle MS m/a 550 (M ⁺)
propan-zirconiumdichlorid (43)	violette Kristane, $WS, m/e 350 (W)$
$2 - n^3 - (9 - Fluorenvliden) - 2 - n^3 - (1 - [3 - (5 - hexenvl)] indenvliden}$	violette Kristalle
propan-zirconiumdichlorid (44)	
$2-\eta^{3}-(9-\text{Fluorenyliden})-2-\eta^{3}-[1-(3-\text{trimethylsilyl})\text{indenyliden}]$	violette Kristalle, MS, m/e 554 (M ⁺)
propan-zirconiumdichlorid (45)	
2-'73-(9-Fluorenyliden)	violette Kristalle, MS, m/e 580 (M ⁺)
$-2-\eta^{3}$ -[1-(3-allyldimethylsilyl)indenylidenlpropan-	
zirconiumdichlorid (46)	
$2-\eta^{3}-(9-\text{Fluorenyliden})-2-\eta^{3}-\{1-[3-(5-\text{hexenyldimethylsilyl})]\text{ indenyliden}\}$	violette Kristalle, MS, m/e 622 (M ⁺)
propan-zirconiumdichlorid (47) $2 - \frac{3}{2} (0)$ Elegeneuriliden) $2 - \frac{3}{2} [1 + (2) \ln t - t]$ in densitident	$\sim 1_{\rm c}$
$2-\eta^2$ -(9-Fluorenyliden)-2- η^2 -[1-(3-butyl)indenyliden]	violette Kristalle, MS, m/e 538 (M ⁺)
$2 - n^3 - (9 - \text{Fluorenvliden}) - 2 - n^3 - [1 - (3 - \text{hevvl}) indenvliden]$	violette Kristalle MS m/e 564 (M ⁺)
propan-zirconiumdichlorid (49)	violette Kristane, wis, m/e 504 (wi)
$2-n^3$ -(9-Fluorenvliden)- $2-n^3$ -[1-(3-benzvl)indenvliden]	violette Kristalle, MS, m/e 672 (M ⁺)
propan-zirconiumdichlorid (50)	
$2-\eta^3$ -(9-Fluorenyliden)- $2-\eta^3$ -{1-[3-(2-phenyl-ethyl)]indenyliden}	violette Kristalle, MS, m/e 586 (M ⁺)
propan-zirconiumdichlorid (51)	
$2-\eta^{3}-(9-\text{Fluorenyliden})-2-\eta^{3}-\{1-[3-(2-\text{methoxyethyl})]\text{ indenyliden}\}$	violette Kristalle, MS, m/e 540 (M ⁺)
propan-zirconiumaichlorid (52)	
$1-\eta^{3}-(9-\text{Fluorenyliden})-1-\eta^{3}-[1-(3-\text{allyl})\text{indenyliden}]$	violette Kristalle, MS, m/e 584 (M ⁺).
-1-phenylethan-zirconiumdichlorid (53)	violette Unistelle Elementeneneluse
1-y -(9-Fluorenyinden)-1-y -{1-[5-(5-outenyi)]indenyinden}	refunden: C 61 16: H 4 80:
-1-phenylethan-zheomunidemond (34)	CarHaoZrCla·CHaCla berechnet: C
	61.48: H 4.42%: MS. m/e 598 (M ⁺)
$1-\eta^{3}-(9-\text{Fluorenyliden})-1-\eta^{3}-\{1-[3-(4-\text{pentenyl})]\text{ indenyliden}\}$	violette Kristalle, MS, m/e 612 (M ⁺)
-1-phenylethan-zirconiumdichlorid (55)	
$1-\eta^{3}-(9-\text{Fluorenyliden})-1-\eta^{3}-\{1-[3-(5-\text{hexenyl})]\text{ indenyliden}\}$	violette Kristalle, MS, m/e 626 (M ⁺)
-1-phenylethan-zirconiumdichlorid (56)	
$1-\eta^{3}-(9-\text{Fluorenyliden})-1-\eta^{3}-[1-(3-\text{trimethylsilyl})\text{indenyliden}]$	violette Kristalle, Elementaranalyse:
-1-phenylethan-zirconiumaichlorid (57)	gefunden: C 57.45; H 4.77;
	$C_{33}H_{30}S_1Z_1C_1_2 \cdot C_1_2C_1_2$ berechnet: C
$1 + u^3$ (0 Elyopponyliden) $1 + u^3$ [1 (2 allyldimethylailyl)indenyliden]	58.19; H 4.60%; MS, m/e 616 (M ⁺)
1- η' -(9-Fluorenyilden)-1- η' -[1-(5-anyidimethyisinyi)indenyilden]	violette Klistalle, MS, m/e 042 (M $^{+}$)
$1-n^3-(9-\text{Fluorenvliden})-1-n^3-[1-(3-\text{butyl})]$ indenvliden]	violette Kristalle MS m/e 600 (M ⁺)
-1-phenylethan-zirconiumdichlorid (59)	
$1-\eta^{3}-(9-\text{Fluorenyliden})-1-\eta^{3}-[1-(3-\text{heryl})\text{indenyliden}]$	violette Kristalle, MS, m/e 630 (M ⁺)
-1-phenylethan-zirconiumdichlorid (60)	
$1-\eta^{3}-(9-\text{Fluorenyliden})-1-\eta^{3}-[1-(3-\text{henzyl})\text{indenyliden}]$	violette Kristalle, MS, m/e 634 (M ⁺)
-1-phenylethan-zirconiumdichlorid (61/61*)	
$1-\eta^{3}-(9-\text{Fluorenyliden})-1-\eta^{3}-\{1-[3-(2-\text{phenyl-ethyl})]\text{ indenyliden}\}$	violette Kristalle, MS, m/e 648 (M ⁺)
-1-phenylethan-zirconiumdichlorid $(62/62^*)$	
$5 - \eta^{2} - (9 - Fluorenyliden) - 5 - \eta^{2} - [1 - (3 - trimethyl-silyl)indenyliden]$	violette Kristalle, MS, m/e 595 (M ⁺)

Abb. 7. 500.13 MHz 1D-¹H-NMR-Spektrum (A) und NOE-Differenzspektren (B) und (C) von Verbindung 64 zur räumlichen Fixierung der Protonen H(8) und H(11) [Spektrum (B)] und der Protonen H(1) und H(16) [Spektrum (C)] zu den Methylprotonen der Methylenbrücke. * kennzeichnet die jeweilige Einstrahlfrequenz. Im olefinischen Bereich ist die beginnende Zersetzung der Probe erkennbar.

Abb. 8. 62.9 MHz ${}^{13}C{}^{1}H$ -NMR-Spektrum (J-moduliert) von Verbindung 64 basierend auf ${}^{1}J({}^{13}C{}^{1}H) = 145$ Hz. Quartäre und CH₂-Kohlenstoffatome (negative Phase) bzw. CH- und CH₃-Kohlenstoffatome (positive Phase) sind in Phase. S = CDCl₃.

Abb. 9. Konturplot eines 500.13 MHz 2D-¹³C,¹H-HMQC-Experiments (basierend auf ¹J(¹³C¹H) = 120 Hz; delay for inversion recovery = 0.31 s; Gesamtmeßzeit 3 h; Auflösung: F1 (¹³C) = 29.5 Hz, F2 (¹H) = 1.59 Hz). Die Projektion für F1 entstammt dem 1D-¹³C {¹H}-Spektrum.

3.8. Synthese für den Metallocenkomplex 64

3.0 mmol des alkenylsubstituierten Metallocendichloridkomplexes und 0.79 g (3.11 mmol) Lithiumaluminium-tri-*t*-butyloxyhydrid werden in 50 ml Tetrahydrofuran gelöst und mindestens über Nacht bei Raumtemperatur gerührt. Das Lösungsmittel wird im Vakuum eingedampft und der Rückstand über Natriumsulfat mit Toluol extrahiert. Die letzteren Fraktionen enthalten den Komplex, der unter Zusatz von Hexan bei -78° C auskristallisiert. Die Ausbeute liegt bei 20–30%. Rote Kristalle, MS, m/e 502 (M⁺).

3.9. Untersuchungen zur Immobilisierung

Die Untersuchungen zur Selbstimmobilisierung wurden in Schlenkrohren durchgeführt. Etwa 10 mg des jeweiligen Komplexes wurden mit 10 ml MAO (30%ige Lösung in Toluol) aktiviert, mit 40 ml Toluol verdünnt und anschließend einem Ethylendruck von 0.4–0.6 bar ausgesetzt. Der Einbau des Komplexes in

Abb. 10. Konturplot eines 500.13 MHz 2D-¹³C,¹H-HMQC-Experiments (basierend auf ${}^{1}J({}^{13}C{}^{1}H) = 160$ Hz; delay for inversion recovery = 0.72 s; Gesamtmeßzeit 3.5 h; Auflösung: F1 (${}^{13}C) = 4.9$ Hz, F2 (${}^{1}H) = 1.70$ Hz). Die Projektion für F1 entstammt dem 1D- ${}^{13}C{}^{1}H$ -Spektrum.

die Polymerkette zeigte sich an der charakteristischen Farbe des gebildeten Polymerniederschlags.

3.10. Durchführung der Polymerisationsversuche

3.10.1. Aktivierung der Katalysatorvorstufen

Der jeweilige Metallocenkomplex wurde unter Schutzgas abgewogen (etwa $8-12 \pm 0.1$ mg) und

mit MAO aktiviert (1 ml MAO (30% in Toluol) pro mg Metallocendichloridkomplex). Die Lösung wurde mit Toluol so verdünnt, daß etwa 0.2–0.5 mg Metallocenkomplex in 1 ml Toluol gelöst waren. Davon wurde etwa 1 mg Katalysator für die Polymerisation eingesetzt. Diese Lösungen wurden innerhalb von 60 Minuten zur Polymerisation verwendet.

Tabelle 4 Vollständige NMR-spektroskopische Charakterisierung von Verbindung 64

	1	2	3	4	4a	4b	5	6
δ ¹ H	7.83	7.20	7.52	7.95		_	8.10	7.28
$\delta^{-13}C$	124.8	127.2	123.8	124.1	121.0	126.4	124.2	122.3
	7	8	8a	9	9a	10	10a	11
δ ¹ H	7.13	8.00						7.88
δ ¹³ C	128.1	123.8	120.3	78.3	122.8	95.6	121.9	123.9
	12	13	14	14a	15	16	17	18
δ ¹ H	6.83	6.98	7.37			5.60	2.77, 2.88	1.21, 1.83
δ ¹³ C	124.8	123.7	123.4	126.5	114.4	107.2	25.1	28.8
	19	20	21	22	23			
δ ¹ H	1.01, 1.83	-2.31, 0.20	2.81	2.40				
δ ¹³ C	27.6	67.5	27.9	31.6	42.7			

3.10.2. Polymerisation von Ethylen

In einem 1 l Büchi Laborautoklaven BEP 280 werden 500 ml Pentan, 7 ml MAO (30% in Toluol) und die entsprechende Menge Katalysatorlösung ([Zr]:[Al] 1:17000) vorgelegt. Der Reaktor wurde auf 60°C aufge-

Tabelle 5

Vergleich der $^{13}\text{C-NMR-Kohlenstoff}$ Verschiebungen von Komplexen mit σ -gebundenen Fluorenylliganden mit Komplex 64

	Cp ₂ ZrFlu ₂ [21]	$Cp_2'ZrFlu_2$ [21]	64
δ ¹³ C [C(9)]	69.1	67.1	78.3

heizt und ein konstanter Ethylendruck von 10 bar angelegt. Nach einer Stunde wurde die Polymerisation durch Ablassen des Ethylens beendet.

3.11. Charakterisierung der Polymerproben

3.11.1. Differential scanning calorimetry

Zur Messung der thermischen Eigenschaften der Polymerproben stand ein DSC-7 Instrument (Perkin-Elmer) zur Verfügung. Die Polymerproben wurden vor der Messung im Vakuum getrocknet. Zur Ermitt-lung der Schmelzenthalpien wurden jeweils 3–5 mg des Polymers in Standardaluminiumpfännchen eingeschweißt und mit folgendem Temperaturprogramm gemessen: (1) Aufheizphase (20°C/min) von 50°C-200°C, Abkühlphase (– 20°C/min) auf 50°C, (2) Aufheizphase Tabelle 6 Vergleich der ¹³C-Kohlenstoff Verschiebungen von ausgewählten Komplexen mit η^2 -gebundenen Indenylidenliganden mit Komplex 64

	$\begin{bmatrix} 23 \end{bmatrix}$	[23]	Mec Me Mec Me a
δ ¹³ C (a)	129.8	128.9	114.4
δ ¹³ C (b)	111.7	111.0	107.2
δ ¹³ C (c)	84.4	85.7	95.6

(20°C/min) von 50–200°C, (3) Abkühlphase (-20°C/min auf 50°C. Die Temperatur wurde linear bezüglich Indium korrigiert (Schmp. 156.6°C); die Schmelzenthalpie von Indium ($\Delta H_{\rm m} = 28.45$ J/g) wurde zur Kalibrierung benutzt. Für die Ermittlung

des Kristallinitätsgrades α wurde die Beziehung $\alpha = \Delta H_{\rm m}/\Delta H_{\rm m}^0$ gewählt. $\Delta H_{\rm m}$ ergibt sich aus den Daten des zweiten Heizlaufs, für $\Delta H_{\rm m}^0$ als Schmelzenthalpie für 100% kristallines Polyethylen wurden 290 J/g [27] angenommen.

Abb. 11. Polymerisationsaktivitäten der Katalysatoren und Molekulargewichte der Polyethylene in Abhängigkeit von der Länge des ω -Alkenylsubstituenten des Metallocenkomplexes/MAO; ^{a)} C_n⁼: ω -Alkenylsubstituent mit der Kettenlänge *n*.

Abb. 12. Polymerisationsaktivitäten der Katalysatoren und Molekulargewichte der Polyethylene in Abhängigkeit von der Länge des ω -Alkenylsubstituenten des Metallocenkomplexes/MAO; ^{a)} C_n⁼: ω -Alkenylsubstituent mit der Kettenlänge *n*.

Tabelle 7 Vergleich der ¹³C-NMR-Signale der quartären Kohlenstoffatome C(9) und C(10) in unterschiedlich verbrückten Komplexen [21,28,29]

		Ph 2r cl [28]		
δ ¹³ C (C9)	80.1	79.2	79.0	79.0
δ ¹³ C (C10)	113.8	112.4	95.9	93.3

Me 5 10 7 Cl Me 5 10 7 Cl Me 5 10 7 Cl				
δ ¹³ C (C9)	65.8	62.4	103.6	113.8
δ ¹³ C (C10)	84.2	79.8	> 121	-

Tabelle 8										
Ethylenpolymerisationen mit	(FluCMe2Ind')ZrCl2/MAO	und	(FluCMeButen	ylInd′)ZrCl ₂ /MAO	(Ind'	= Indenyliden	substituiertes	Indeny	liden)

Komplex	nplex \overline{M}_{η} (g/mol) Aktivität ^{a)} [g] PE/[mmol] Zr · h ($T_{i, max}$) (°C) ^{b)}		$\Delta H_{\rm m}^{\ \rm c)} \ ({ m J}/{ m g})$	α ^{d)} (%)	$T_{\rm m}^{\rm e)}$ (°C)	Co-p. ^{f)}
38	100 000	4200 (n.b.)	111.29	38	135.1	_
45	265 000	16670 (68.1)	100.92	35	136.7	_
46	375 000	19200 (60.4)	117.06	40	134.6	+
41	240 000	6300 (60.0)	84.02	29	133.3	+
42	300 000	10200 (60.2)	103.65	36	133.2	+
43	375 000	17100^{g} (61.3)	119.19	41	131.3	++
44	280 000	13200 (n.b.)	102.62	35	133.6	++
47	340 000	30900 (84.0)	114.68	40	136.8	0
48	340 000	35500 (62.4)	114.66	40	141.2	_
49	340 000	24100 (61.6)	107.57	37	139.0	_
50	320 000	14200 (60.5)	127.59	44	137.6	_
51	335 000	25000 (61.5)	117.68	41	135.3	_
52	210 000	n.b. (59.4)	67.53	23	131.7	_
40/40*	210 000	4400 (58.8)	101.37	35	133.0	+
63/63*	300 000	23822 (n.b.)	126.31	43	136.6	+
64	310 000	24100 (61.6)	116.59	40	133.1	+ +

^{a)} [Zr]:[Al] = 1:17000; ^{b)} $T_{i, max}$ = maximale Innentemperatur des Polymerisationsreaktors; ^{c)} als Schmelzenthalpien ΔH_m wurden die Werte des zweiten Heizlaufs der DSC angegeben; ^{d)} siehe [27]; ^{e)} als Schmelzpunkt wurde das Maximum des Schmelzpeaks des zweiten Heizlaufs der DSC gewahlt; ^{f)} Copolymerisierbarkeit: Fahigkeit des Katalysators, sich in die Polymerkette zu copolymerisieren: ++ = sehr gut, + = gut, 0 = befriedigend, - = keine; ^{g)} Polymerisationsdauer 120 min.

Tabelle 9

180

Ethy	lenpol	ymerisationen	mit	(FluCMePhInd))ZrCl	MAO (Ind' =	 Indenvliden, 	substituiertes	Indenvliden)
				(/					

Komplex	$\overline{\mathrm{M}}_{\eta}$ (g/mol)	Aktivität ^{a)} [g] PE/[mmol] Zr∙h (T _{i, max}) (°C) ^{b)}	$\Delta H_{ m m}^{ m c)}~({ m J/g})$	α ^{d)} (%)	$T_{\rm m}^{\rm e)}$ (°C)	Co-p. ^{f)}
39/39*	185 000	10400 (60.6)	105.48	36	134.3	_
57	720 000	53700 (67.8)	105.01	36	137.5	_
58	800 000	11000^{i} (72.7)	131.77	45	137.4	+
53/53*	580 000	6200 (60.3)	98.78	34	133.7	+
54	750 000	8800 ^{j)} (60.5)	124.26	43	135.9	+
55	850 000	16600^{g} (60.9)	112.62	39	135.2	++
56	770 000	6900^{k} (59.4)	111.66	39	136.1	++
59	620 000	21600 (66.0)	105.93	37	138.5	_
60	620 000	14500 (59.8)	100.70	35	139.1	_
61/61*	680 000	70000 (76.0)	105.88	37	133.0	_
62/62*	500 000	34100 ¹⁾ (n.b.)	128.43	44	133.8	_

^{a)} [Zr]:[Al] = 1:17000; ^{b)} $T_{i, max}$ = maximale Innentemperatur des Polymerisationsreaktors; ^{c)} als Schmelzenthalpien ΔH_m wurden die Werte des zweiten Heizlaufs der DSC angegeben; ^{d)} siehe [27]; ^{e)} als Schmelzpunkt wurde das Maximum des Schmelzpeaks des zweiten Heizlaufs der DSC gewahlt; ^{f)} Copolymerisierbarkeit: Fahigkeit des Katalysators, sich in die Polymerkette zu copolymerisieren: ++ = sehr gut, + = gut, 0 = befriedigend, -= keine; ^{g)} Polymerisationsdauer 120 min; ⁱ⁾ Polymerisationsdauer 25 min; ^{j)} Polymerisationsdauer 140 min; ^{k)} Polymerisationsdauer 90 min; ⁱ⁾ Polymerisationsdauer 20 min.

Schema 4. Fixierung des Katalysators in der Polymerkette.

3.11.2. Viskosimetrie

Das viskosimetrische Molekulargewichtsmittel \overline{M}_{η} wurde mit einem Ubbelohde-Präzisionskapillarviskosimeter in *cis/trans* Dekalin bei 135 ± 0.1°C bestimmt. Die Proben wurden innerhalb von drei bis vier Stunden bei 140–150°C in *cis-trans* Dekalin gelöst. Für die Bestimmung von \overline{M}_{η} standen Eichkurven zur Verfügung. Zur Verringerung des Fehlers wurde jede Polymerprobe zweimal eingewogen und vermessen. Als möglicher Fehler der Molekulargewichtsbestimmungen werden ± 10% angenommen.

Schema 5. Mögliche Koordination des ω -Alkenylrestes an das Metallzentrum während der Polymerisation. Bildung eines Metallacyclus mit anschließender β -H-Eliminierung (MAO wurde nicht eingezeichnet).

Abb. 13. Viscosimetrische Molekulargewichte \overline{M}_{η} der von den Komplextypen (FluCMe₂Ind')ZrCl₂/MAO und (FluCMePhInd')ZrCl₂/MAO synthetisierten Polyethylene (Ind' = Indenyliden, substituiertes Indenyliden); ^{a)} $C_n^=$: ω -Alkenylsubstituent mit der Kettenlänge *n*.

Acknowledgements

Wir danken der Phillips Petroleum Company (Bartlesville, OK, USA) und der Deutschen Forschungsgemeinschaft für die finanzielle Unterstützung.

References

- H.-H. Brintzinger, D. Fischer, R. Mülhaupt, B. Rieger, R. Waymouth, Angew. Chem. 107 (1995) 1255; Angew. Chem. Int. Ed Engl. 34 (1995) 1143.
- [2] M. Bochmann, J. Chem. Soc. Dalton Trans. (1996) 255.
- [3] M. Aulbach, F. Küber, Chem. Unserer Zeit 4 (1994) 197.
- [4] P.C. Möhring, N.J. Coville, J. Organomet. Chem. 479 (1994) 1.
- [5] W. Kaminsky, M. Arnd, Adv. Polym. Sci. 127 (1997) 143.
- [6] J.S. Palackal, H.G. Alt, Russ. Chem. Bull. 44 (1995) 1.
- [7] A. Razavi, L. Peters, L. Natpliotis, J. Mol. Catal. A: Chem. 115 (1997) 129.
- [8] Rohrmann (Hoechst AG), Eur. Pat. Appl. (1993) 528287; Chem. Abstr. 119 (1993) P271957.
- [9] CJ. Chabrand, J.P. McNally, I.R. Little (BP Chemicals), Eur. Pat. Appl (1994) 586167; Chem. Abstr. 121 (1994) P158369d.
- [10] G. Erker, R. Aul, Chem. Ber. 124 (1991) 1301.
- [11] B. Peifer, H.G. Alt, W. Milius, J. Organomet. Chem. 553 (1998) 205.
- [12] K.J. Stone, R.D. Little, J. Org. Chem. 49 (1984) 1849.
- [13] S. Hünig, G. Märkl, J. Sauer, Integriertes organisches Praktikam, VCH, Weinheim, 1979, p. 389.

- [14] H.G. Alt, R. Zenk, W. Milius, J. Organomet. Chem. 514 (1996) 257.
- [15] H.G. Alt, S.J. Palackal, J. Organomet. Chem. 472 (1994) 113.
- [16] N. Theophilou, R. Aznar, A. Munardi; F. Schue, J. Sledz, H. Naarmann (BASF AG), Ger. Offen., 3625009, 1987; Chem. Abstr. 107 (1987) P7807e.
- [17] J.C.W. Chien, Polyacetylene: Chemistry, Physics and Material Sciences, Academic Press, New York, 1984.
- [18] M. Bochmann, A.J. Jaggar, J.C. Nicholls, Angew. Chem. 102 (1990) 830.
- [19] H. Günther, NMR-Spektroskopie, vol. 3, Georg Thieme Verlag, Stuttgart, 1992, p. 429.
- [20] H. Günther, M. Görlitz, H.-H. Hinrichs, Tetrahedron 24 (1968) 5665.
- [21] M.A. Schmid, H.G. Alt, W. Milius, J. Organomet. Chem. 541 (1997) 3.
- [22] G.M. Diamond, A.N. Chernega, P. Mountford, M.L.H. Green, J. Chem. Soc. Dalton Trans. (1996) 921.
- [23] G.M. Diamond, M.L.H. Green, P. Mountford, N.A. Popham, A.N. Chernega, J. Chem. Soc. Chem. Commun. (1994) 103.
- [24] (a) M.A. Schmid, H.G. Alt, W. Milius, J. Organomet. Chem. 501 (1995) 101. (b) M.A. Schmid, H.G. Alt, W. Milius, J. Organomet. Chem. 514 (1996) 45. (c) H.G. Alt, R. Zenk, J. Organomer Chem. 518 (1996) 7. (d) H.G. Alt, M. Jung, J. Organomet. Chem. 973 (und darin enthaltene Literatur).
- [25] A. Winter, V. Dolle, W. Spaleck (Hoechst AG), Eur. Pat. Appl. (1992) 516019; Chem. Abstr. 119 (1993) P28794m.
- [26] A. Razavi, J. Atwood, Macromol. Symp. 89 (1995) 345.
- [27] G. Lutt, M. Dorn, Angew. Macromol. Chem. 188 (1991) 177.
- [28] H.G. Alt, M. Jung, J. Organomet. Chem. 552 (1998) 183.
- [29] B. Peifer, Dissertation, Universitat Bayreuth, 1995.